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Abstract. In a MDA process, software artifacts are refined from the problem 
space (requirements) to the solution space (application). A model refinement 
involves the application of operators that perform tasks over models such as 
integrations and transformations, among others. We are working on a model 
management framework, called MOMENT (MOdel manageMENT), where 
model operators are defined independently of any metamodel in order to 
increase their reusability. This approach also increases the level of abstraction 
of solutions of this kind by working on models as first-class citizens, instead of 
working on the internal representation of a model at a programming level. In 
this context, traceability constitutes the mechanism to follow the 
transformations carried out over a model through several refinement steps. In 
this paper, we focus on the generic traceability support that the MOMENT 
framework provides. These capabilities allow the definition of generic complex 
operators that permit solving specific problems such as change propagation. 

Keywords: Model-Driven Architecture, Model Management, traceability, 
software maintenance. 

1. Introduction 

Traceability is an important issue in environments where there is a process chain. In 
these cases, information about each step in the chain may be stored for further 
processing. For example, in the automotive industry, traceability makes recalls 
possible; in the food industry, it contributes to food safety; in the Software 
Engineering field, it provides support for requirements validation and improves the 
quality of the software development process. 

In any scenario of the Software Engineering field, there is a manipulation of a 
software artifact. The capability of describing and querying the manipulation that has 
been performed on a specific artifact might be relevant to correlated tasks. However, 
traceability still remains in the background when software engineering problems are 
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solved. It is often misunderstood and burdensome due to the lack of tools that provide 
full automatic support for it [1, 2].  

In the Model-Driven Architecture initiative [3] (MDA), a software artifact is 
viewed as a model. Typical tasks, such as code production, integration of 
applications, interoperability between applications, are performed on models directly. 
This allows the user to work at a conceptual level, and makes the identification of the 
elements needed to automate these tasks easier. These tasks are pervasive in many 
scenarios and are usually solved in an ad-hoc manner. 

Following this model-driven approach, a new discipline, called Model 
Management, was proposed in [4]. This discipline considers models as first-class 
citizens and provides a set of generic operators to deal with them: Merge, Diff, 
ModelGen, etc. These operators provide a reusable solution to the tasks described 
above so that the user deals directly with models, rather than working on the internal 
representation of a model at a programming level. Several approaches to this 
discipline [5, 6] specify operators that are based on mappings to deal with models. A 
mapping is a relationship between an element of a domain model and an element of a 
range model that indicates that they represent the same element in different models. 
This means that mappings between two models must be explicitly defined in order to 
apply an operator to them.  

Using our experience in applying the algebraic specification formalism to solve 
actual software engineering problems [7, 8], we are working on a model management 
framework called MOMENT (MOdel manageMENT). In our approach, we represent 
the relationships between two models in an implicit manner by means of an 
equivalence morphism that is defined between two metamodels. Our approach 
describes equivalence relationships between two models from a more abstract and 
reusable point of view. However, explicit mappings between two models are also 
beneficial when there is no definition of the equivalence morphism between two 
metamodels. We refer to mappings of this kind as traceability links. 

In this paper, we focus on the automatic traceability support that is provided by our 
framework from a generic point of view. We define what a traceability model is in 
this setting and how they can be used to provide traceability support in many different 
scenarios: requirements, workflows, ontologies, etc. We also show how traceability 
support contributes to automate solutions such as the software maintenance. 

The structure of the paper is as follows: Section 2 reviews the traceability 
management studies that have been performed in the Requirements Engineering field; 
Section 3 provides an example to illustrate the use of traceability; Section 4 provides 
an overview of our model management approach; Section 5 details the generic 
traceability support that is provided in our framework; Section 6 solves the problem 
of the case study with our model management operators; Section 7 presents some 
related work; finally, Section 8 summarizes the main features of our approach. 

2   The Traceability Problem in Requirements Engineering 

In Requirements Engineering, the IEEE Guide to Software Requirement 
Specifications [9] indicates that a software requirements specification is traceable if 



  

 

the origin of each requirement is clear and if it facilitates the referencing of each 
requirement in future development or enhancement documentation. 

Based on this definition, Gotel and Finkelstein [10] described requirements 
traceability as the ability to describe and follow the life of a requirement, both 
forwards and backwards, through all the refinement steps in a software development 
process. Queries of this kind allow the user to know what refinements have been 
applied to a requirement (in a forward direction), and permit the identification of a 
requirement from a more specific software artifact such as code (in a backward 
direction). Therefore, traceability can be used for requirements validation and for 
providing support for software maintenance. Traceability also provides economic 
leverage as it details how the system has been developed and avoids the redundant 
development of certain parts. 

To achieve traceability in a software development process, several tasks should be 
taken into account [2]: 
1. Trace definition, to indicate the kinds of objects in our system that can be traced 

and what information is going to be defined in a trace. 
2. Trace production, to indicate what activities, actions, decisions and events 

happening during software development generate traces for further use. 
3. Trace extraction, to indicate how the traces produced in the previous task can be 

queried in order to achieve certain goals, such as requirements validation or 
software maintenance. 

4. Trace verification, to maintain the integrity of the set of objects and traces. 
There are many tools that provide requirements traceability management [11]. To 

provide efficient traceability management, these tools must resolve certain problems 
that are present in the industrial setting: 
− The lack of a common guideline that describes how to define a traceability model 

through a well-defined metamodel and how to use it; for example, the way the 
UML standard provides support to object-oriented modeling. This is due to the 
variable nature of the traceability capture and use [2], which varies from one 
organization to another, from one project to another and even from one stakeholder 
to another. 

− The establish and end-user conflict [10], where trace providers and users have 
different goals and priorities. 

− The use of heterogeneous tools to define and manipulate the software artifacts 
involved in a software development process. Thus, the interoperability issue arises 
as an important feature to be taken into account in a traceability management tool. 
These tools are also implemented in an ad-hoc way for the requirements 

traceability problem without taking into account that the same functionality can be 
used in other contexts.  

3   A Software Maintenance Case Study: Change Propagation 

In this case study, we use the change propagate scenario that was introduced in [5]. 
We illustrate it by means of a specific example shown in Fig. 1. We have defined the 
information structure of an application in a XML schema (XSD). To build a new 



 

 

application that stores the information in a relational database, we reuse the 
metainformation that describes the XML schema. By applying a transformation1 
mechanism (step 1), we obtain the new relational database (RDB). The transformation 
mechanism also generates a set of links between the new generated RDB relational 
schema and the source XML schema in order to provide traceability support 
(mapXSD2RDB). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An example of change propagation. 

After obtaining a semantically equivalent relational database from the original 
XML schema, we continue with the development of the new system. This may 
involve changes in the application and in the database (step 2), obtaining the 
relational schema (RDB’). These changes are traced and stored by the tool that 
manages the model manipulation or by the user directly (mapRDB2RDB’).  

Once the new system is developed, changes may occur in the requirements of the 
system, requiring modifications. It is easier to extend the XML schema than to modify 
the RDB database. At this point, the application of the transformation mechanism 
used in step 1 will discard the changes applied from RDB to RDB’.  

A solution to this change propagation example can be performed by using model 
management operators, as shown in Section 6. In our approach, traceability links are 
used to automate the propagation of changes that were applied to the RDB relational 
schema, for the new system C. 

4 The MOMENT Framework: a MOdel manageMENT 
Environment into Eclipse 

The MDA initiative of the OMG consists of a family of standards that indicate how to 
define and how to use models to develop software applications in a MDE setting. 
Application integration and interoperability are two goals of this initiative, as 
indicated in the request for proposals for the new standard 
                                                           
1 We use the term ‘model transformation’ for the mechanism that translates a model between 

two different metamodels. 
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Query/Views/Transformations [12]. Nevertheless, to achieve interoperability between 
applications, bridges built between them are still ad-hoc. 

We are working on the application of the model management trend in the context 
of MDA. We have developed a framework, called MOMENT (MOdel 
manageMENT), which is embedded in the Eclipse platform. It provides a set of 
generic operators to deal with models through the Eclipse Modeling Framework 
(EMF) [13]. EMF provides a close implementation to the MDA guidelines. This 
framework enables the automatic importation of software artifacts from 
heterogeneous datasources: UML models (by means of visual modeling 
environments), relational schemas of any relational database management system 
(through the Rational Rose tool) and XML schemas. Moreover, third-party 
researchers and developers are bringing new tools to work on ontologies through 
EMF [14, 15] and graphical Domain Specific Languages [16, 17]. Therefore, EMF 
has become an industrial framework for MDA. 

4.1   Bridging the EMF and the Maude Technical Spaces 

The concept of technical spaces (TS) was introduced by Kurtev et al. in the discussion 
on the problem of bridging different technologies [18]. A technical space is a working 
context with a set of concepts, a body of knowledge, tools, required skills, and 
possibilities [19]. For example, we use the EMF and Maude technical spaces for our 
framework. The EMF is characterized by its interoperability with industrial tools for 
solving actual Software Engineering problems. Maude constitutes the formal 
backbone for our model management approach. 

The algebra of operators, which was proposed by Bernstein [20] to deal with 
models and mappings between models as first-class citizens, has been adapted and 
directly specified as a generic algebra by using the algebraic specification formalism 
Maude [21] in the MOMENT framework. This algebraic specification language 
belongs to the OBJ family, and its equational deduction mechanism animates the 
specification of an operator over a piece of data, providing the operational semantics 
for our model management operators. We have developed a plug-in that embeds the 
Maude environment into the Eclipse framework so that we can use it for our purposes. 

In [7, 8], we envisioned the advantages of applying this formalism to solve actual 
problems in MDA such as model transformation. To fulfill this goal, we have defined 
two bridges between both technical spaces, at the M2-layer and at the M1-layer (using 
the Meta-Object Facility [22] terminology). Both of them permit the integration of 
MOMENT with EMF. 

We have defined a projection mechanism at the M2-layer that obtains the algebraic 
specification2 that corresponds to a specific metamodel automatically, by applying 
generative programming techniques. The inverse projection mechanism that obtains 
an EMF metamodel from an algebraic specification is not interesting in our tool, 
                                                           
2 The algebraic specification that is generated for a given metamodel (defined in EMF as an 

Ecore model) permits the representation of models as algebraic terms. Thus, models can be 
manipulated by our model management operators. Algebraic specifications of this kind do 
not specify operational semantics for the concepts of the metamodel, they only permit the 
representation of information for model management issues. 



 

 

because the algebraic specification must conform to several features in order to be 
used by our operators, and they should be automatically achieved. We also think that 
visual modeling environments are more suitable to define such metamodels. 

At the model level, we have developed a bidirectional projection mechanism that 
permits us to project an EMF model as a term of an algebra and to project an EMF 
model from a term. In this case, the bidirectionality is needed to apply an operator to 
an input model, since the input model must be serialized as a term and the output term 
must be deserialized into an EMF model in order to be persisted. 

4.2   Operators 

In MOMENT, operators are defined in a parameterized module called MOMENT-OP. 
In this way, operators are defined generically. To apply these operators to specific 
models, this module must be instantiated by passing a metamodel as actual parameter. 
This task is automatically performed by the MOMENT tool. 

To understand the solution that is given for the change propagation example in 
Section 6, we informally present some of the model management operators that we 
use in our approach by indicating their inputs, outputs and semantics: 
1. Cross and Merge 

These operators correspond to well-defined set operations: intersection and disjoint 
union, respectively. Both operators receive two models (A and B) as input and 
produce a third model (C). The Cross operator returns a model C that contains 
elements that participate in both the A and B input models; while the Merge 
operator returns a model C that contains elements that belong to either the input 
model A or the input model B, deleting duplicated elements. Both operators also 
return two models of links (mapAC and mapBC) that relate the elements of each 
input model to the elements of the output model. 
Example: <C, mapAC, mapBC> = Cross(A,B). 

2. Diff 
This operator performs the difference between two input models (A and B). The 
difference between the two models (C) is the set of objects in model A that does 
not correspond to any element in model B. 

3. ModelGen  
ModelGen performs the translation of a model A, which conforms to a source 
metamodel MMA, into a target metamodel MMB, obtaining model B. This 
transformation implies dealing with two metamodels. This is perfectly feasible in 
our approach due to the modularity and reusability that algebraic specifications 
provide. This operator also produces a model of links (mapAB) relating the elements 
of the input model to the elements of the generated model. 
Example: <B, mapAB> = ModelGenMMA2MMB(A). 

5   Traceability Support in Model Management 

All the definitions of Requirements Traceability stated in Section 2 have one feature 
in common: a trace provides information about a task that has been performed on a 



  

 

source software artifact in a software development process, and relates it to the 
resulting software artifact. Traceability support must provide both the mechanism that 
is needed to define traceability links and the query functionality that permits link 
navigation. In this section, we define traceability in MDA through a model 
management lens, and we present a set of operators that provide traceability support 
in the MOMENT framework. 

5.1   Generic Traceability Management 

A MDA process consists of a sequence of operations performed over a set of models. 
These models conform to a metamodel and represent specific software artifacts. 
Operations such as model integration or model transformation can be directly 
supported by simple model management operators (Section 4.2). Other operations, 
such as the change propagation mechanism of the case study, can be specified as a 
complex operator made up of other operators. 

Each simple operator carries out a manipulation over a set of input models. To 
fulfill this, the operator invokes a function that is defined at the metamodel level. The 
semantics of this function is defined axiomatically in equational logic, and each one 
of its axioms is called a manipulation rule. To register the task performed over a 
model, each operator automatically produces a set of links between the elements of a 
source model and the elements of the resulting model. Such links are stored as models 
and are used to provide support for traceability. 

Following the model management approach, we define Generic Traceability 
Management as two main issues: 
1. The definition of a traceability metamodel to indicate the information needed to 

link the elements of two different models that can belong to different metamodels 
in a specific context. The detail of the metamodel depends on the common 
understanding of the traceability management in a specific society. For example, a 
generic traceability metamodel may be described for the Requirements 
Engineering field, although it seems more feasible to define a traceability 
metamodel for each organization or even each project. 

2. A mechanism to extract information from a traceability model independently of the 
metamodel used. This mechanism is made up of two kinds of operators:  
− Query operators that provide forward and backward navigation through a 

traceability model. 
− Traceability management operators to manipulate the traceability models in 

order to automate the reasoning over traceability links. For instance, the 
Compose operator permits chaining traceability links in order to make implicit 
traceability links explicit; and the Match operator permits the inference of 
traceability models between two models. Furthermore, a traceability model can 
also be manipulated by model management operators. 

5.1.1   Definition of the Traceability Metamodel 
To define the traceability metamodel, the user can use the UML notation. This work 
is done by the user for a specific working context. For the case study, we have 
specified a traceability metamodel which basically provides the constructs needed to 



 

 

relate elements of a domain model to elements of a target model, independently of 
their metamodels. In Fig. 3, we show the part of the MOMENT framework 
metamodel that concerns the traceability support. 

 
 
 
 
 
 
 
 
 

Fig. 2. The default traceability metamodel of the MOMENT framework. 

In our specific metamodel, the TraceabilityModel class is the root element of the 
package. It allows us to define traceability models. An instance of the 
TraceabilityModel class contains: information about the storage of both the domain 
and the range model (represented by the interface ecore::Resource); which element of 
each model is the root (by means of the domainContainer and rangeContainer roles); 
the operator that has been applied to the domain model; and the links that constitute 
the traceability model. 

The TraceabilityLink class indicates how to define a relationship between a set of 
elements of the domain model and a set of elements of the range model (by means of 
the domain and range roles). Each link is associated to the step of the model 
manipulation task that has produced it (through the manipulationRule role). In the 
metamodel of the figure, ecore::Resource and ecore::EObject refer to the interface 
org.eclipse.emf.ecore.resource.Resource and to the class 
org.eclipse.emf.ecore.EObject, respectively. The former permits access to a model 
stored physically. The latter permits access to any element of an EMF model so that 
any model defined by means of the EMF can be dealt with. The Operator class 
represents an operator that is defined algebraically in MOMENT. The 
ManipulationRule class defines the information needed to specify an axiom for the 
manipulation function used by the simple operators.  

By applying the projection mechanism defined between the EMF TS and Maude 
TS, we obtain the algebraic specification of the traceability metamodel. This means 
that we can specify traceability models as sets of elements so that MOMENT 
operators can be used to manipulate them (Merge, Cross, ModelGen, …).  

5.2 Traceability Operators 

Once we have shown the definition of a specific traceability metamodel, we explain 
the generic traceability operators that are provided by MOMENT. The operators that 
provide support for traceability are defined generically in a parameterized algebraic 
specification, called MOMENT-TRAC(Y :: BASICTMM).  

Fig. 4 shows the elements involved in the parameter passing mechanism diagram. 
BASICTMM (BASIC Traceability MetaModel) is the algebraic specification of the 
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formal parameter, called theory in Maude. This theory declares some operators that 
guarantee the independence between the semantics of the generic traceability 
operators and the semantics of a specific metamodel. For example, an operator of this 
kind is GetDomain. It obtains the domain element of a traceability link independently 
of the syntactical representation of the link. Thus, the formal parameter behaves as an 
interface through which the generic operators can access the elements of a model that 
conforms to a specific traceability metamodel. 

 
 
 
 
 
 
 

Fig. 3.  The parameter passing diagram for the MOMENT-TRAC(Y :: BASICTMM) 
parameterized module. 

TRAC is the algebraic specification obtained by the projection mechanism from a 
specific traceability metamodel. The TRAC specification constitutes the actual 
parameter for the MOMENT-TRAC(Y :: BASICTMM) module and defines the 
semantics of the operators that are only declared in the BASICTMM theory. The 
vTRAC view is the morphism that relates the elements of the BASICTMM formal 
parameter to the elements of the TRAC actual parameter.  

The MOMENT-TRAC(Y::BASICTMM) parameterized algebraic specification 
contains the definition of the traceability operators that are independent of the specific 
TRAC traceability metamodel. The MOMENT-TRAC(vTRAC) value specification 
results from the instantiation3 of the parameterized module with the specific TRAC 
traceability metamodel. 

In this figure, p and p’ are inclusion morphisms that indicate that the formal 
parameter specification is included in the parameterized specification, and that the 
actual parameter specification is included in the value specification, respectively. The 
h morphism is the induced passing morphism that relates the elements of the 
parameterized module to the elements of the MOMENT(vTRAC) value specification, 
by using the vTRAC parameter passing morphism. 

The traceability operators defined in the MOMENT-TRAC(X::BASICTMM) 
parameterized module are classified in two groups: operators that provide support for 
navigability and operators that perform tasks on traceability models. In this paper, we 
focus on the first group of operators. 

We define the operators that provide navigability through a traceability model with 
the following elements: two input models (A and B); a traceability model (mapAB) 
that relates the elements of the two input models and that has been automatically 
produced by an operator or manually produced by a user; a model (A’) that is a sub-
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the fact of passing an actual parameter to the parameterized module, obtaining the final value 
specification. 
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model of A (i.e. A’ only contains elements that also belong to A); and a model (B’) 
that is a sub-model of B. The traceability operators that are considered here are:  
1. Domain and Range  

These operators provide the backward and forward navigation through a 
traceability model, respectively. Both operators obtain a model as output, which is 
not a traceability model. 

The operator Domain takes three models as input: a traceability model (mapAB), 
a domain model (A), and a range model (B’). The operator navigates the 
traceability links of the traceability model that have elements of B’ as target 
elements, and returns a sub-model of A (A’), as shown in Fig. 5.a. 

The operator Range also receives three inputs: a traceability model (mapAB), a 
domain model (A’), and a range model (B). This operator performs the opposite 
task to the previous one: it navigates the traceability links that have elements of A’ 
as domain elements and returns a sub-model of the range model B (B’), as shown 
in Fig. 5.b. 

 
 
 
 
 

Fig. 4. Generic operators for traceability navigation. 

2. SelectMappingsByDomain and SelectMappingsByRange  
These operators produce a traceability model as output and permit selection of 
parts of a traceability model. 

The operator SelectMappingsByDomain receives two input models: a domain 
model (A’) and a traceability model (mapAB). The operator extracts the traceability 
links of the mapAB traceability model that have elements of the A’ model as domain 
elements and returns this sub-model. The traceability links that are added to the 
output traceability model are highlighted by a dotted line in Fig. 5.c. 

The operator SelectMappingsByRange receives two input models: a range model 
(B’) and a traceability model (mapAB). In this case, the operator extracts the 
traceability links of the mapAB traceability model that have elements of the B’ 
model as range elements, and returns this sub-model, as shown in Fig. 5.d. 

5.3   Process 

Taking into account the process described in [2] to define a traceability model, we 
indicate how its tasks are performed in our tool: 
1. Trace definition. Users can define their own metamodel to fit into a specific 

working context. Moreover the default traceability metamodel of the MOMENT 
framework can be used in its place. As seen above, the traceability metamodel can 
be defined using well-known graphical notations, such as UML, through EMF-
compliant tools. 

2. Trace production. By default, the traceability model is automatically generated by 
an operator when it performs a manipulation over a set of input models. 
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Nevertheless, traceability links can be defined manually by means of an editor 
generated from the traceability metamodel, following the EMF software 
development culture. Moreover, a traceability model can be inferred automatically 
between two models by using heuristics [23] or historical knowledge [24]. 

3. Trace extraction. The analysis of the knowledge provided by a set of traceability 
models can be useful to perform other tasks. The traceability operators are used to 
deal with this information in our framework. Such operators constitute an 
automatic reusable solution that provides support for traceability in many scenarios 
in the MDE field. Therefore, our framework provides automatic support for this 
step although the user has to reason about the extracted knowledge. In future 
works, heuristics may be applied in this step to achieve richer information. 

4. Trace verification. The consistency of traceability models can be kept 
automatically when either their domain or their range model is modified, by means 
of the application of traceability operators. Consider that we have a domain model 
A, a range model B and a traceability model mapAB that has been defined between 
them. Three kinds of model modifications are available: addition of elements, 
modification of existing elements and deletion of elements. In the case of adding 
elements to a model, the traceability model remain consistent on the grounds that 
there is no connection between the new elements and the elements of the other 
model, unless this connection is defined explicitly afterwards. In the case of 
modifying and deleting elements of a model, links can be broken when the domain 
or the range elements are deleted. This problem is easily solved by using 
traceability operators. If we delete elements in model A, obtaining model A’, we 
can apply the SelectMappingsByDomain operator to obtain the new consistent 
traceability model mapAB’: mapAB’ = SelectMappingsByDomain(A’, mapAB). 

6   Application to the Case Study 

The problem explained in the case study can be simplified as shown in Fig. 6, where 
the mapXSD2RDB’ traceability model can be easily obtained from the mapXSD2RDB and 
mapRDB2RDB’ traceability models by means of the Compose operator. Therefore, the 
problem can be enunciated as follows: 

We have the following models: an original XML schema (XSD); a XML schema 
(XSD’), which has been evolved from XSD; a relational database RDB’, which has 
been generated from the XML schema XSD and modified afterwards; and a 
traceability model between XSD and RDB’ (mapXSD2RDB’). The goal is to obtain a 
relational database from the XML schema XSD’ that preserves the changes applied to 
RDB’. 

This problem can be solved by the following complex operator: 
 
 



 

 

 
 
 
 
 
 
 
 

Fig. 5. Schematization of the case study problem. 

This operator is made up of simple operators of the MOMENT algebra and the 
steps followed in the script are represented in Fig. 7. These steps are the following: 
1. Unmodified is the part of the XSD model that remains unmodified in the XSD’ 

model. 
2. RDB’’ is the sub-model of RDB’ that corresponds to the unmodified part of XSD’. 
3. newXSD is the part of XSD’ that has been added to the XSD model. 
4. newRDB is the relational schema obtained from the translation of newXSD into the 

relational metamodel. 
5. C is the final model obtained from the integration of the relational databases that 

we have obtained in steps 2 and 4. 
 
 
 
 
 
 
 

Fig. 6. Solution to the case study problem. 

If we want to add traceability support to this operator to generate the traceability 
model that relates the XSD’ model to the new model (C) as well, we only have to add 
the next step after step 54: 

                                                           
4 In this step, the operator Compose (<mapAC> = Compose(A, mapAB, B, mapBC, C)) has five 

input parameters: three models (A, B, C), and two traceability models, which are defined 

operator PropagateChanges(XSD, XSD’, RDB’, mapXSD2RDB’) = 
 <Unmodified, mapXSD2Unmodified, mapXSD’2Unmodified> = Cross(XSD, XSD’) (1) 
 RDB’’ = Range(mapXSD2RDB’, Unmodified, RDB’) (2) 
 <newXSD> = Diff(XSD’, Unmodified) (3) 
 <newRDB, mapnewXSD2newRDB> = ModelGenXSD2RDB(newXSD) (4) 
 <C, mapRDB’’2C, mapnewRDB2C> = Merge(RDB’’, newRDB) (5) 
return (C) 

<mapXSD’2C, mapmapUnmodified2C2mapXSD’2C, mapmapnewXSD2C2mapXSD’2C> = Merge( 
 Compose( Unmodified, SelectMappingsByDomain(Unmodified, mapXSD2RDB’),RDB’’, mapRDB’’2C, C), 
 Compose(newXSD, mapnewXSD2newRDB, newRDB, mapnewRDB2C, C))
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mapnewXSD2newRDB mapnewRDB2C
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RDB’

mapXSD2RDB’

evolution



  

 

This step merges two traceability models: one is defined between the unmodified 
part of XSD’ and C, and the other is defined between the new part of XSD’ and C. 
This step merges both traceability models by means of the Merge operator, in the 
same way that any two models that belong to the same metamodel are merged. The 
model mapXSD’2C has to be added as a return value in the script. 

The resulting complex operator solves the change propagation problem of the case 
study independently of the metamodels involved so that we can apply it to any 
combination of metamodels, instead of using the XSD and the relational metamodels. 

7   Related work 

In the Model Management field, tools do not deal with traceability directly. They 
usually work on mapping models, which define equivalence relationships between the 
elements of two models so that a model management operator can be defined 
generically. Rondo [5] and [6] are good examples of this approach. For instance, 
Rondo’s Merge operator permits the integration of two models. It receives two 
models (A and B) and a mapping model (mapAB) between them as inputs, and it 
produces the merged model C and two new mapping models (mapAC and mapBC): <C, 
mapAC, mapBC> = Merge (A, B, mapAB). 

In MOMENT, mapping models are introduced as traceability models. This is 
because operators do not have to rely on them to be applied to a set of models. In 
MOMENT, the traceability relationships between the elements of two models, which 
are needed to apply an operator to them, are defined between the elements of their 
corresponding metamodels axiomatically within the corresponding operators. The 
collection of equivalence relationships between two metamodels constitutes a 
morphism that can be reused for all the operators of the MOMENT algebra. This 
permits a clearer specification of complex operators. In MOMENT, the Merge 
operator is as follows: <C, mapAC, mapBC> = Merge(A, B). Mapping models are 
produced by the application of a simple operator to a set of models and keep 
information about the manipulation task that has been performed to a model. 
Therefore, we deal with these mapping models from a traceability standpoint. 

The Generic Model Weaver AMW [25] is a tool that permits the definition of 
mapping models (called weaving models) between EMF models in the ATLAS Model 
Management Architecture. AMW provide a basic weaving metamodel that can be 
extended to permit the definition of complex mappings. These mappings are usually 
defined by the user, although they may be inferred by means of heuristics, as in [23]. 
In MOMENT, such mappings are generated by model management operators 
automatically in a traceability model, and can be manipulated by other operators. We 
also support extension of the traceability metamodel. Although the simplicity of our 
initial traceability metamodel, it allows us to deal with complex operators 
satisfactorily.  

                                                                                                                                           
between models A and B (mapAB) and between models B and C (mapBC). It concatenates both 
traceability models obtaining a new one that directly relates A to C. 



 

 

8   Conclusions 

In this paper, we have presented an overview of our model management approach, 
focusing on the automatic support that the MOMENT framework provides for 
traceability. To do this, we have based our approach on the traceability management 
studies that have been made in the Requirements Engineering field. 

We have introduced the Generic Traceability Management concept in the MDA 
initiative through a Model Management lens. We have also discussed some operators 
and illustrated how they can be used to solve common software engineering scenarios, 
like the software maintenance case study presented here. The traceability support has 
been defined in the MOMENT framework generically so that it can be applied to any 
context (requirements, workflows, ontologies,…). It can also be customized with a 
specific traceability metamodel depending on the needs of each working context. 

We provide a new vision of the traceability support with respect to previous model 
management approaches [5, 6], where all operators are based on mappings. In these 
approaches, the equivalence relationships between elements of two models are 
defined with specific explicit mappings at the model level. Such mappings are defined 
by the user or can be inferred by means of heuristics or historical knowledge. 
However the obtained mappings should be reviewed by a user, which can become 
burdensome when huge models are involved.  

In MOMENT, such equivalence relationships are defined as morphisms between 
metamodels because algebraic specifications are used as the background formalism. 
The specification of an equivalence morphism at metamodel level contributes to a 
more abstract and reusable solution for model management. Users of our model 
management approach do not have to deal with algebraic specifications directly. The 
use of EMF to algebraically define models dramatically reduces the learning curve for 
dealing with models from a formal generic standpoint. It also increases the 
interoperability with many industrial software development tools. 

As we are implementing the MOMENT tool as an Eclipse plugin, AMW 
constitutes a good environment to define our traceability models by the user. 
Nevertheless, we are developing our own editor for traceability models in order to add 
the chance of invoking traceability operators directly from the editor interface. In this 
way, we will be able to automatically compose traceability models or to navigate 
them from visual interfaces, using the underlying algebraic specification formalism. 

The next step in the MOMENT framework development process is to provide 
support for the QVT Relations language in order to use it for the definition of 
equivalence relationships and transformations. The work presented in this paper 
constitutes the traceability support that MOMENT will provide for the QVT standard. 
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