
Automatic Support for Traceability in a Generic Model
Management Framework♦

Artur Boronat, José Á. Carsí, Isidro Ramos

Department of Information Systems and Computation
Polytechnic University of Valencia

Camí de Vera s/n
46022 Valencia-Spain

{aboronat | pcarsi | iramos}@dsic.upv.es

Abstract. In a MDA process, software artifacts are refined from the problem
space (requirements) to the solution space (application). A model refinement
involves the application of operators that perform tasks over models such as
integrations and transformations, among others. We are working on a model
management framework, called MOMENT (MOdel manageMENT), where
model operators are defined independently of any metamodel in order to
increase their reusability. This approach also increases the level of abstraction
of solutions of this kind by working on models as first-class citizens, instead of
working on the internal representation of a model at a programming level. In
this context, traceability constitutes the mechanism to follow the
transformations carried out over a model through several refinement steps. In
this paper, we focus on the generic traceability support that the MOMENT
framework provides. These capabilities allow the definition of generic complex
operators that permit solving specific problems such as change propagation.

Keywords: Model-Driven Architecture, Model Management, traceability,
software maintenance.

1. Introduction

Traceability is an important issue in environments where there is a process chain. In
these cases, information about each step in the chain may be stored for further
processing. For example, in the automotive industry, traceability makes recalls
possible; in the food industry, it contributes to food safety; in the Software
Engineering field, it provides support for requirements validation and improves the
quality of the software development process.

In any scenario of the Software Engineering field, there is a manipulation of a
software artifact. The capability of describing and querying the manipulation that has
been performed on a specific artifact might be relevant to correlated tasks. However,
traceability still remains in the background when software engineering problems are

♦ This work was supported by the Spanish Government under the National Program for

Research, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

solved. It is often misunderstood and burdensome due to the lack of tools that provide
full automatic support for it [1, 2].

In the Model-Driven Architecture initiative [3] (MDA), a software artifact is
viewed as a model. Typical tasks, such as code production, integration of
applications, interoperability between applications, are performed on models directly.
This allows the user to work at a conceptual level, and makes the identification of the
elements needed to automate these tasks easier. These tasks are pervasive in many
scenarios and are usually solved in an ad-hoc manner.

Following this model-driven approach, a new discipline, called Model
Management, was proposed in [4]. This discipline considers models as first-class
citizens and provides a set of generic operators to deal with them: Merge, Diff,
ModelGen, etc. These operators provide a reusable solution to the tasks described
above so that the user deals directly with models, rather than working on the internal
representation of a model at a programming level. Several approaches to this
discipline [5, 6] specify operators that are based on mappings to deal with models. A
mapping is a relationship between an element of a domain model and an element of a
range model that indicates that they represent the same element in different models.
This means that mappings between two models must be explicitly defined in order to
apply an operator to them.

Using our experience in applying the algebraic specification formalism to solve
actual software engineering problems [7, 8], we are working on a model management
framework called MOMENT (MOdel manageMENT). In our approach, we represent
the relationships between two models in an implicit manner by means of an
equivalence morphism that is defined between two metamodels. Our approach
describes equivalence relationships between two models from a more abstract and
reusable point of view. However, explicit mappings between two models are also
beneficial when there is no definition of the equivalence morphism between two
metamodels. We refer to mappings of this kind as traceability links.

In this paper, we focus on the automatic traceability support that is provided by our
framework from a generic point of view. We define what a traceability model is in
this setting and how they can be used to provide traceability support in many different
scenarios: requirements, workflows, ontologies, etc. We also show how traceability
support contributes to automate solutions such as the software maintenance.

The structure of the paper is as follows: Section 2 reviews the traceability
management studies that have been performed in the Requirements Engineering field;
Section 3 provides an example to illustrate the use of traceability; Section 4 provides
an overview of our model management approach; Section 5 details the generic
traceability support that is provided in our framework; Section 6 solves the problem
of the case study with our model management operators; Section 7 presents some
related work; finally, Section 8 summarizes the main features of our approach.

2 The Traceability Problem in Requirements Engineering

In Requirements Engineering, the IEEE Guide to Software Requirement
Specifications [9] indicates that a software requirements specification is traceable if

the origin of each requirement is clear and if it facilitates the referencing of each
requirement in future development or enhancement documentation.

Based on this definition, Gotel and Finkelstein [10] described requirements
traceability as the ability to describe and follow the life of a requirement, both
forwards and backwards, through all the refinement steps in a software development
process. Queries of this kind allow the user to know what refinements have been
applied to a requirement (in a forward direction), and permit the identification of a
requirement from a more specific software artifact such as code (in a backward
direction). Therefore, traceability can be used for requirements validation and for
providing support for software maintenance. Traceability also provides economic
leverage as it details how the system has been developed and avoids the redundant
development of certain parts.

To achieve traceability in a software development process, several tasks should be
taken into account [2]:
1. Trace definition, to indicate the kinds of objects in our system that can be traced

and what information is going to be defined in a trace.
2. Trace production, to indicate what activities, actions, decisions and events

happening during software development generate traces for further use.
3. Trace extraction, to indicate how the traces produced in the previous task can be

queried in order to achieve certain goals, such as requirements validation or
software maintenance.

4. Trace verification, to maintain the integrity of the set of objects and traces.
There are many tools that provide requirements traceability management [11]. To

provide efficient traceability management, these tools must resolve certain problems
that are present in the industrial setting:
− The lack of a common guideline that describes how to define a traceability model

through a well-defined metamodel and how to use it; for example, the way the
UML standard provides support to object-oriented modeling. This is due to the
variable nature of the traceability capture and use [2], which varies from one
organization to another, from one project to another and even from one stakeholder
to another.

− The establish and end-user conflict [10], where trace providers and users have
different goals and priorities.

− The use of heterogeneous tools to define and manipulate the software artifacts
involved in a software development process. Thus, the interoperability issue arises
as an important feature to be taken into account in a traceability management tool.
These tools are also implemented in an ad-hoc way for the requirements

traceability problem without taking into account that the same functionality can be
used in other contexts.

3 A Software Maintenance Case Study: Change Propagation

In this case study, we use the change propagate scenario that was introduced in [5].
We illustrate it by means of a specific example shown in Fig. 1. We have defined the
information structure of an application in a XML schema (XSD). To build a new

application that stores the information in a relational database, we reuse the
metainformation that describes the XML schema. By applying a transformation1
mechanism (step 1), we obtain the new relational database (RDB). The transformation
mechanism also generates a set of links between the new generated RDB relational
schema and the source XML schema in order to provide traceability support
(mapXSD2RDB).

Fig. 1. An example of change propagation.

After obtaining a semantically equivalent relational database from the original
XML schema, we continue with the development of the new system. This may
involve changes in the application and in the database (step 2), obtaining the
relational schema (RDB’). These changes are traced and stored by the tool that
manages the model manipulation or by the user directly (mapRDB2RDB’).

Once the new system is developed, changes may occur in the requirements of the
system, requiring modifications. It is easier to extend the XML schema than to modify
the RDB database. At this point, the application of the transformation mechanism
used in step 1 will discard the changes applied from RDB to RDB’.

A solution to this change propagation example can be performed by using model
management operators, as shown in Section 6. In our approach, traceability links are
used to automate the propagation of changes that were applied to the RDB relational
schema, for the new system C.

4 The MOMENT Framework: a MOdel manageMENT
Environment into Eclipse

The MDA initiative of the OMG consists of a family of standards that indicate how to
define and how to use models to develop software applications in a MDE setting.
Application integration and interoperability are two goals of this initiative, as
indicated in the request for proposals for the new standard

1 We use the term ‘model transformation’ for the mechanism that translates a model between

two different metamodels.

XML Schemas

Task

code

description

priceXSD’

Invoice
code
date

Item
id

descriptor

duration

XSD
RDB

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 description
 duration
FK2 task
 workers

Task

PK code

 description
 price

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 description
 duration
 workers

RDB’

C

Relational Schemas

?

(step 1)
automatic

transformation

(step 2)
changes

mapXSD2RDB mapRDB2RDB’

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 descriptor
 duration

Query/Views/Transformations [12]. Nevertheless, to achieve interoperability between
applications, bridges built between them are still ad-hoc.

We are working on the application of the model management trend in the context
of MDA. We have developed a framework, called MOMENT (MOdel
manageMENT), which is embedded in the Eclipse platform. It provides a set of
generic operators to deal with models through the Eclipse Modeling Framework
(EMF) [13]. EMF provides a close implementation to the MDA guidelines. This
framework enables the automatic importation of software artifacts from
heterogeneous datasources: UML models (by means of visual modeling
environments), relational schemas of any relational database management system
(through the Rational Rose tool) and XML schemas. Moreover, third-party
researchers and developers are bringing new tools to work on ontologies through
EMF [14, 15] and graphical Domain Specific Languages [16, 17]. Therefore, EMF
has become an industrial framework for MDA.

4.1 Bridging the EMF and the Maude Technical Spaces

The concept of technical spaces (TS) was introduced by Kurtev et al. in the discussion
on the problem of bridging different technologies [18]. A technical space is a working
context with a set of concepts, a body of knowledge, tools, required skills, and
possibilities [19]. For example, we use the EMF and Maude technical spaces for our
framework. The EMF is characterized by its interoperability with industrial tools for
solving actual Software Engineering problems. Maude constitutes the formal
backbone for our model management approach.

The algebra of operators, which was proposed by Bernstein [20] to deal with
models and mappings between models as first-class citizens, has been adapted and
directly specified as a generic algebra by using the algebraic specification formalism
Maude [21] in the MOMENT framework. This algebraic specification language
belongs to the OBJ family, and its equational deduction mechanism animates the
specification of an operator over a piece of data, providing the operational semantics
for our model management operators. We have developed a plug-in that embeds the
Maude environment into the Eclipse framework so that we can use it for our purposes.

In [7, 8], we envisioned the advantages of applying this formalism to solve actual
problems in MDA such as model transformation. To fulfill this goal, we have defined
two bridges between both technical spaces, at the M2-layer and at the M1-layer (using
the Meta-Object Facility [22] terminology). Both of them permit the integration of
MOMENT with EMF.

We have defined a projection mechanism at the M2-layer that obtains the algebraic
specification2 that corresponds to a specific metamodel automatically, by applying
generative programming techniques. The inverse projection mechanism that obtains
an EMF metamodel from an algebraic specification is not interesting in our tool,

2 The algebraic specification that is generated for a given metamodel (defined in EMF as an

Ecore model) permits the representation of models as algebraic terms. Thus, models can be
manipulated by our model management operators. Algebraic specifications of this kind do
not specify operational semantics for the concepts of the metamodel, they only permit the
representation of information for model management issues.

because the algebraic specification must conform to several features in order to be
used by our operators, and they should be automatically achieved. We also think that
visual modeling environments are more suitable to define such metamodels.

At the model level, we have developed a bidirectional projection mechanism that
permits us to project an EMF model as a term of an algebra and to project an EMF
model from a term. In this case, the bidirectionality is needed to apply an operator to
an input model, since the input model must be serialized as a term and the output term
must be deserialized into an EMF model in order to be persisted.

4.2 Operators

In MOMENT, operators are defined in a parameterized module called MOMENT-OP.
In this way, operators are defined generically. To apply these operators to specific
models, this module must be instantiated by passing a metamodel as actual parameter.
This task is automatically performed by the MOMENT tool.

To understand the solution that is given for the change propagation example in
Section 6, we informally present some of the model management operators that we
use in our approach by indicating their inputs, outputs and semantics:
1. Cross and Merge

These operators correspond to well-defined set operations: intersection and disjoint
union, respectively. Both operators receive two models (A and B) as input and
produce a third model (C). The Cross operator returns a model C that contains
elements that participate in both the A and B input models; while the Merge
operator returns a model C that contains elements that belong to either the input
model A or the input model B, deleting duplicated elements. Both operators also
return two models of links (mapAC and mapBC) that relate the elements of each
input model to the elements of the output model.
Example: <C, mapAC, mapBC> = Cross(A,B).

2. Diff
This operator performs the difference between two input models (A and B). The
difference between the two models (C) is the set of objects in model A that does
not correspond to any element in model B.

3. ModelGen
ModelGen performs the translation of a model A, which conforms to a source
metamodel MMA, into a target metamodel MMB, obtaining model B. This
transformation implies dealing with two metamodels. This is perfectly feasible in
our approach due to the modularity and reusability that algebraic specifications
provide. This operator also produces a model of links (mapAB) relating the elements
of the input model to the elements of the generated model.
Example: <B, mapAB> = ModelGenMMA2MMB(A).

5 Traceability Support in Model Management

All the definitions of Requirements Traceability stated in Section 2 have one feature
in common: a trace provides information about a task that has been performed on a

source software artifact in a software development process, and relates it to the
resulting software artifact. Traceability support must provide both the mechanism that
is needed to define traceability links and the query functionality that permits link
navigation. In this section, we define traceability in MDA through a model
management lens, and we present a set of operators that provide traceability support
in the MOMENT framework.

5.1 Generic Traceability Management

A MDA process consists of a sequence of operations performed over a set of models.
These models conform to a metamodel and represent specific software artifacts.
Operations such as model integration or model transformation can be directly
supported by simple model management operators (Section 4.2). Other operations,
such as the change propagation mechanism of the case study, can be specified as a
complex operator made up of other operators.

Each simple operator carries out a manipulation over a set of input models. To
fulfill this, the operator invokes a function that is defined at the metamodel level. The
semantics of this function is defined axiomatically in equational logic, and each one
of its axioms is called a manipulation rule. To register the task performed over a
model, each operator automatically produces a set of links between the elements of a
source model and the elements of the resulting model. Such links are stored as models
and are used to provide support for traceability.

Following the model management approach, we define Generic Traceability
Management as two main issues:
1. The definition of a traceability metamodel to indicate the information needed to

link the elements of two different models that can belong to different metamodels
in a specific context. The detail of the metamodel depends on the common
understanding of the traceability management in a specific society. For example, a
generic traceability metamodel may be described for the Requirements
Engineering field, although it seems more feasible to define a traceability
metamodel for each organization or even each project.

2. A mechanism to extract information from a traceability model independently of the
metamodel used. This mechanism is made up of two kinds of operators:
− Query operators that provide forward and backward navigation through a

traceability model.
− Traceability management operators to manipulate the traceability models in

order to automate the reasoning over traceability links. For instance, the
Compose operator permits chaining traceability links in order to make implicit
traceability links explicit; and the Match operator permits the inference of
traceability models between two models. Furthermore, a traceability model can
also be manipulated by model management operators.

5.1.1 Definition of the Traceability Metamodel
To define the traceability metamodel, the user can use the UML notation. This work
is done by the user for a specific working context. For the case study, we have
specified a traceability metamodel which basically provides the constructs needed to

relate elements of a domain model to elements of a target model, independently of
their metamodels. In Fig. 3, we show the part of the MOMENT framework
metamodel that concerns the traceability support.

Fig. 2. The default traceability metamodel of the MOMENT framework.

In our specific metamodel, the TraceabilityModel class is the root element of the
package. It allows us to define traceability models. An instance of the
TraceabilityModel class contains: information about the storage of both the domain
and the range model (represented by the interface ecore::Resource); which element of
each model is the root (by means of the domainContainer and rangeContainer roles);
the operator that has been applied to the domain model; and the links that constitute
the traceability model.

The TraceabilityLink class indicates how to define a relationship between a set of
elements of the domain model and a set of elements of the range model (by means of
the domain and range roles). Each link is associated to the step of the model
manipulation task that has produced it (through the manipulationRule role). In the
metamodel of the figure, ecore::Resource and ecore::EObject refer to the interface
org.eclipse.emf.ecore.resource.Resource and to the class
org.eclipse.emf.ecore.EObject, respectively. The former permits access to a model
stored physically. The latter permits access to any element of an EMF model so that
any model defined by means of the EMF can be dealt with. The Operator class
represents an operator that is defined algebraically in MOMENT. The
ManipulationRule class defines the information needed to specify an axiom for the
manipulation function used by the simple operators.

By applying the projection mechanism defined between the EMF TS and Maude
TS, we obtain the algebraic specification of the traceability metamodel. This means
that we can specify traceability models as sets of elements so that MOMENT
operators can be used to manipulate them (Merge, Cross, ModelGen, …).

5.2 Traceability Operators

Once we have shown the definition of a specific traceability metamodel, we explain
the generic traceability operators that are provided by MOMENT. The operators that
provide support for traceability are defined generically in a parameterized algebraic
specification, called MOMENT-TRAC(Y :: BASICTMM).

Fig. 4 shows the elements involved in the parameter passing mechanism diagram.
BASICTMM (BASIC Traceability MetaModel) is the algebraic specification of the

ecore::Resou
rce

Operator
TraceabilityModel 1

+domainModel

1

1

+rangeModel

11

+operator

1

ecore::EObject

1 +domainContainer1
1

+rangeContainer

1

Manipulation
Rule

TraceabilityLink
1..*

1

+links1..*

+model1

1..*

+domain

1..*
1..*

+range
1..*

1

+manipulationRule

1

formal parameter, called theory in Maude. This theory declares some operators that
guarantee the independence between the semantics of the generic traceability
operators and the semantics of a specific metamodel. For example, an operator of this
kind is GetDomain. It obtains the domain element of a traceability link independently
of the syntactical representation of the link. Thus, the formal parameter behaves as an
interface through which the generic operators can access the elements of a model that
conforms to a specific traceability metamodel.

Fig. 3. The parameter passing diagram for the MOMENT-TRAC(Y :: BASICTMM)
parameterized module.

TRAC is the algebraic specification obtained by the projection mechanism from a
specific traceability metamodel. The TRAC specification constitutes the actual
parameter for the MOMENT-TRAC(Y :: BASICTMM) module and defines the
semantics of the operators that are only declared in the BASICTMM theory. The
vTRAC view is the morphism that relates the elements of the BASICTMM formal
parameter to the elements of the TRAC actual parameter.

The MOMENT-TRAC(Y::BASICTMM) parameterized algebraic specification
contains the definition of the traceability operators that are independent of the specific
TRAC traceability metamodel. The MOMENT-TRAC(vTRAC) value specification
results from the instantiation3 of the parameterized module with the specific TRAC
traceability metamodel.

In this figure, p and p’ are inclusion morphisms that indicate that the formal
parameter specification is included in the parameterized specification, and that the
actual parameter specification is included in the value specification, respectively. The
h morphism is the induced passing morphism that relates the elements of the
parameterized module to the elements of the MOMENT(vTRAC) value specification,
by using the vTRAC parameter passing morphism.

The traceability operators defined in the MOMENT-TRAC(X::BASICTMM)
parameterized module are classified in two groups: operators that provide support for
navigability and operators that perform tasks on traceability models. In this paper, we
focus on the first group of operators.

We define the operators that provide navigability through a traceability model with
the following elements: two input models (A and B); a traceability model (mapAB)
that relates the elements of the two input models and that has been automatically
produced by an operator or manually produced by a user; a model (A’) that is a sub-

3 In the context of algebraic specifications, the instantiation of a parameterized module refers to

the fact of passing an actual parameter to the parameterized module, obtaining the final value
specification.

p

vTRAC

p’

h

BASICTMM MOMENT-TRAC(X::BASICTMM)

TRAC MOMENT-TRAC(vTRAC)

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

model of A (i.e. A’ only contains elements that also belong to A); and a model (B’)
that is a sub-model of B. The traceability operators that are considered here are:
1. Domain and Range

These operators provide the backward and forward navigation through a
traceability model, respectively. Both operators obtain a model as output, which is
not a traceability model.

The operator Domain takes three models as input: a traceability model (mapAB),
a domain model (A), and a range model (B’). The operator navigates the
traceability links of the traceability model that have elements of B’ as target
elements, and returns a sub-model of A (A’), as shown in Fig. 5.a.

The operator Range also receives three inputs: a traceability model (mapAB), a
domain model (A’), and a range model (B). This operator performs the opposite
task to the previous one: it navigates the traceability links that have elements of A’
as domain elements and returns a sub-model of the range model B (B’), as shown
in Fig. 5.b.

Fig. 4. Generic operators for traceability navigation.

2. SelectMappingsByDomain and SelectMappingsByRange
These operators produce a traceability model as output and permit selection of
parts of a traceability model.

The operator SelectMappingsByDomain receives two input models: a domain
model (A’) and a traceability model (mapAB). The operator extracts the traceability
links of the mapAB traceability model that have elements of the A’ model as domain
elements and returns this sub-model. The traceability links that are added to the
output traceability model are highlighted by a dotted line in Fig. 5.c.

The operator SelectMappingsByRange receives two input models: a range model
(B’) and a traceability model (mapAB). In this case, the operator extracts the
traceability links of the mapAB traceability model that have elements of the B’
model as range elements, and returns this sub-model, as shown in Fig. 5.d.

5.3 Process

Taking into account the process described in [2] to define a traceability model, we
indicate how its tasks are performed in our tool:
1. Trace definition. Users can define their own metamodel to fit into a specific

working context. Moreover the default traceability metamodel of the MOMENT
framework can be used in its place. As seen above, the traceability metamodel can
be defined using well-known graphical notations, such as UML, through EMF-
compliant tools.

2. Trace production. By default, the traceability model is automatically generated by
an operator when it performs a manipulation over a set of input models.

mapAB
A’

A
B’

B

mapAB
A’

A
B’

B

5.a. A’ = Domain(mapAB, A, B’) 5.b. B’ = Range(mapAB, A’, B)

mapAB

A’

A B

5.c. SelectMappingsByDomain(A’, mapAB)

mapABA
B’

B

5.d. SelectMappingsByRange(B’, mapAB)

Nevertheless, traceability links can be defined manually by means of an editor
generated from the traceability metamodel, following the EMF software
development culture. Moreover, a traceability model can be inferred automatically
between two models by using heuristics [23] or historical knowledge [24].

3. Trace extraction. The analysis of the knowledge provided by a set of traceability
models can be useful to perform other tasks. The traceability operators are used to
deal with this information in our framework. Such operators constitute an
automatic reusable solution that provides support for traceability in many scenarios
in the MDE field. Therefore, our framework provides automatic support for this
step although the user has to reason about the extracted knowledge. In future
works, heuristics may be applied in this step to achieve richer information.

4. Trace verification. The consistency of traceability models can be kept
automatically when either their domain or their range model is modified, by means
of the application of traceability operators. Consider that we have a domain model
A, a range model B and a traceability model mapAB that has been defined between
them. Three kinds of model modifications are available: addition of elements,
modification of existing elements and deletion of elements. In the case of adding
elements to a model, the traceability model remain consistent on the grounds that
there is no connection between the new elements and the elements of the other
model, unless this connection is defined explicitly afterwards. In the case of
modifying and deleting elements of a model, links can be broken when the domain
or the range elements are deleted. This problem is easily solved by using
traceability operators. If we delete elements in model A, obtaining model A’, we
can apply the SelectMappingsByDomain operator to obtain the new consistent
traceability model mapAB’: mapAB’ = SelectMappingsByDomain(A’, mapAB).

6 Application to the Case Study

The problem explained in the case study can be simplified as shown in Fig. 6, where
the mapXSD2RDB’ traceability model can be easily obtained from the mapXSD2RDB and
mapRDB2RDB’ traceability models by means of the Compose operator. Therefore, the
problem can be enunciated as follows:

We have the following models: an original XML schema (XSD); a XML schema
(XSD’), which has been evolved from XSD; a relational database RDB’, which has
been generated from the XML schema XSD and modified afterwards; and a
traceability model between XSD and RDB’ (mapXSD2RDB’). The goal is to obtain a
relational database from the XML schema XSD’ that preserves the changes applied to
RDB’.

This problem can be solved by the following complex operator:

Fig. 5. Schematization of the case study problem.

This operator is made up of simple operators of the MOMENT algebra and the
steps followed in the script are represented in Fig. 7. These steps are the following:
1. Unmodified is the part of the XSD model that remains unmodified in the XSD’

model.
2. RDB’’ is the sub-model of RDB’ that corresponds to the unmodified part of XSD’.
3. newXSD is the part of XSD’ that has been added to the XSD model.
4. newRDB is the relational schema obtained from the translation of newXSD into the

relational metamodel.
5. C is the final model obtained from the integration of the relational databases that

we have obtained in steps 2 and 4.

Fig. 6. Solution to the case study problem.

If we want to add traceability support to this operator to generate the traceability
model that relates the XSD’ model to the new model (C) as well, we only have to add
the next step after step 54:

4 In this step, the operator Compose (<mapAC> = Compose(A, mapAB, B, mapBC, C)) has five

input parameters: three models (A, B, C), and two traceability models, which are defined

operator PropagateChanges(XSD, XSD’, RDB’, mapXSD2RDB’) =
 <Unmodified, mapXSD2Unmodified, mapXSD’2Unmodified> = Cross(XSD, XSD’) (1)
 RDB’’ = Range(mapXSD2RDB’, Unmodified, RDB’) (2)
 <newXSD> = Diff(XSD’, Unmodified) (3)
 <newRDB, mapnewXSD2newRDB> = ModelGenXSD2RDB(newXSD) (4)
 <C, mapRDB’’2C, mapnewRDB2C> = Merge(RDB’’, newRDB) (5)
return (C)

<mapXSD’2C, mapmapUnmodified2C2mapXSD’2C, mapmapnewXSD2C2mapXSD’2C> = Merge(
 Compose(Unmodified, SelectMappingsByDomain(Unmodified, mapXSD2RDB’),RDB’’, mapRDB’’2C, C),
 Compose(newXSD, mapnewXSD2newRDB, newRDB, mapnewRDB2C, C))

mapXSD2RDB’

mapnewXSD2newRDB mapnewRDB2C

mapRDB’’2C

XSD

Unmodified

XSD’

newXSD

RDB’’

RDB’

newRDB

C

Unmodified

mapXSD’2C

① ②

③
④

⑤

①

mapXSD2RDB

XSD

XSD’

RDB
mapRDB2RDB’

RDB’

mapXSD2RDB’

evolution

This step merges two traceability models: one is defined between the unmodified
part of XSD’ and C, and the other is defined between the new part of XSD’ and C.
This step merges both traceability models by means of the Merge operator, in the
same way that any two models that belong to the same metamodel are merged. The
model mapXSD’2C has to be added as a return value in the script.

The resulting complex operator solves the change propagation problem of the case
study independently of the metamodels involved so that we can apply it to any
combination of metamodels, instead of using the XSD and the relational metamodels.

7 Related work

In the Model Management field, tools do not deal with traceability directly. They
usually work on mapping models, which define equivalence relationships between the
elements of two models so that a model management operator can be defined
generically. Rondo [5] and [6] are good examples of this approach. For instance,
Rondo’s Merge operator permits the integration of two models. It receives two
models (A and B) and a mapping model (mapAB) between them as inputs, and it
produces the merged model C and two new mapping models (mapAC and mapBC): <C,
mapAC, mapBC> = Merge (A, B, mapAB).

In MOMENT, mapping models are introduced as traceability models. This is
because operators do not have to rely on them to be applied to a set of models. In
MOMENT, the traceability relationships between the elements of two models, which
are needed to apply an operator to them, are defined between the elements of their
corresponding metamodels axiomatically within the corresponding operators. The
collection of equivalence relationships between two metamodels constitutes a
morphism that can be reused for all the operators of the MOMENT algebra. This
permits a clearer specification of complex operators. In MOMENT, the Merge
operator is as follows: <C, mapAC, mapBC> = Merge(A, B). Mapping models are
produced by the application of a simple operator to a set of models and keep
information about the manipulation task that has been performed to a model.
Therefore, we deal with these mapping models from a traceability standpoint.

The Generic Model Weaver AMW [25] is a tool that permits the definition of
mapping models (called weaving models) between EMF models in the ATLAS Model
Management Architecture. AMW provide a basic weaving metamodel that can be
extended to permit the definition of complex mappings. These mappings are usually
defined by the user, although they may be inferred by means of heuristics, as in [23].
In MOMENT, such mappings are generated by model management operators
automatically in a traceability model, and can be manipulated by other operators. We
also support extension of the traceability metamodel. Although the simplicity of our
initial traceability metamodel, it allows us to deal with complex operators
satisfactorily.

between models A and B (mapAB) and between models B and C (mapBC). It concatenates both
traceability models obtaining a new one that directly relates A to C.

8 Conclusions

In this paper, we have presented an overview of our model management approach,
focusing on the automatic support that the MOMENT framework provides for
traceability. To do this, we have based our approach on the traceability management
studies that have been made in the Requirements Engineering field.

We have introduced the Generic Traceability Management concept in the MDA
initiative through a Model Management lens. We have also discussed some operators
and illustrated how they can be used to solve common software engineering scenarios,
like the software maintenance case study presented here. The traceability support has
been defined in the MOMENT framework generically so that it can be applied to any
context (requirements, workflows, ontologies,…). It can also be customized with a
specific traceability metamodel depending on the needs of each working context.

We provide a new vision of the traceability support with respect to previous model
management approaches [5, 6], where all operators are based on mappings. In these
approaches, the equivalence relationships between elements of two models are
defined with specific explicit mappings at the model level. Such mappings are defined
by the user or can be inferred by means of heuristics or historical knowledge.
However the obtained mappings should be reviewed by a user, which can become
burdensome when huge models are involved.

In MOMENT, such equivalence relationships are defined as morphisms between
metamodels because algebraic specifications are used as the background formalism.
The specification of an equivalence morphism at metamodel level contributes to a
more abstract and reusable solution for model management. Users of our model
management approach do not have to deal with algebraic specifications directly. The
use of EMF to algebraically define models dramatically reduces the learning curve for
dealing with models from a formal generic standpoint. It also increases the
interoperability with many industrial software development tools.

As we are implementing the MOMENT tool as an Eclipse plugin, AMW
constitutes a good environment to define our traceability models by the user.
Nevertheless, we are developing our own editor for traceability models in order to add
the chance of invoking traceability operators directly from the editor interface. In this
way, we will be able to automatically compose traceability models or to navigate
them from visual interfaces, using the underlying algebraic specification formalism.

The next step in the MOMENT framework development process is to provide
support for the QVT Relations language in order to use it for the definition of
equivalence relationships and transformations. The work presented in this paper
constitutes the traceability support that MOMENT will provide for the QVT standard.

References

1. Palmer, J.D.: Traceability. Richard H. Thayer and Merlin Dorfman, Software Requirements
Engineering, 2nd Edition, IEEE Computer Society, pages 412–422, 2000.

2. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. Software
Engineering, 27(1):58–93, 2001.

3. OMG Model-Driven Architecture. http://www.omg.org/mda/
4. Bernstein, P.A., Levy, A.Y., Pottinger, R.A.: A Vision for Management of Complex Models.

Microsoft Research Technical Report MSR-TR-2000-53, June 2000, (short version in
SIGMOD Record 29, 4 (Dec. '00)).

5. Melnik, S., E. Rahm, P. A. Bernstein, "Rondo: A Programming Platform for Generic Model
Management," Proc. SIGMOD 2003, pp. 193-204 (PDF, 344KB). Extended version in Web
Semantics, Volume 1, Number 1.

6. Song, G., Zhang, K., Kong, J.: Model Management Through Graph Transformation. IEEE
VL/HCC'04. Rome, Italy. 2004.

7. Boronat, A., Pérez, J., Carsí, J. Á., Ramos, I.: Two experiencies in software dynamics.
Journal of Universal Science Computer. Special issue on Breakthroughs and Challenges in
Software Engineering. Vol. 10 (issue 4). April 2004.

8. Boronat, A., Carsí, J.Á., Ramos, I.: Automatic Reengineering in MDA Using Rewriting
Logic as Transformation Engine. IEEE Computer Society Press. 9th European Conference
on Software Maintenance and Reengineering. Manchester, UK. 2005.

9. M. Dorfman and R. Thayer. Guide to software requirements specification. IEEE Standards,
Guidelines and Examples on System and Software Requirements Engineering, 1990.

10. Gotel, O. C. Z. and Finkelstein, A. C. W.: An Analysis of the Requirements Traceability
Problem, Proceedings of the First International Conference on Requirements Engineering
(ICRE '94), IEEE Computer Society Press, Colorado Springs, Colorado, U.S.A., April 18-
22, pp. 94-101.

11. Requirements tools in the Volere web site: http://www.volere.co.uk/tools.htm
12. Object Management Group. Request for Proposal: MOF 2.0 Query / Views

/Transformations RFP, 2002. ad/2002-04-10.
13. The EMF site: http://download.eclipse.org/tools/emf/scripts/home.php
14. Zhang, L., Yu, Y., Lu, J., Lin, C., Tu, K., Guo, M., Zhang, Z., Xie, G., Su, Z., Pan, Y.:

ORIENT: Integrate Ontology Engineering into Industry Tooling Environment. In Proc. of
the Third International Semantic Web Conference 2004, Hiroshima, Japan.

15. The Hyena web site: http://www.pst.ifi.lmu.de/~rauschma/hyena/
16. The Graphical Modeling Framework proposal: http://www.eclipse.org/proposals/eclipse-

gmf/main.html
17. The JANE Model-specific editor generator web site:

http://www.dstc.edu.au/Research/Projects/Pegamento/jane/
18. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. Int. Federated

Conf. (DOA, ODBASE, CoopIS), Industrial track, Irvine, 2002.
19. Bézivin, J., Devedzic, V., Djuric, D., Favreau, J.M., Gasevic, D., Jouault, F.: An M3-

Neutral infrastructure for bridging model engineering and ontology engineering. In
Proceedings of INTEROP-ESA’05, Geneve, Switzerland. 2005.

20. Bernstein, P.A: Applying Model Management to Classical Meta Data Problems. pp. 209-
220, CIDR 2003.

21. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:
Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285(2):187-243, 2002.

22. OMG, “Meta Object Facility 1.4”,
http://www.omg.org/technology/documents/formal/mof.htm

23. Madhavan, J., P.A. Bernstein, and E. Rahm: Generic Schema Matching using Cupid.
VLDB 2001.

24. Madhavan, J., Bernstein, P. A., Chen, K., Halevy, A.Y., Shenoy, P.: Corpus-based Schema
Matching," Workshop on Information Integration on the Web, at IJCAI'2003, pp. 59-66.

25. Didonet Del Fabro, M, Bézivin, J, Jouault, F, Breton, E, and Gueltas, G : AMW: a generic
model weaver. Proceedings of the 1ère Journée sur l'Ingénierie Dirigée par les Modèles
(IDM05). 2005.

