
Definition of OCL 2.0 Operational Semantics by means
of a Parameterized Algebraic Specification ♦

Artur Boronat, Isidro Ramos, José Á. Carsí

Department of Information Systems and Computation
Technical University of Valencia

C/Camí de Vera, s/n
46022 Valencia-Spain

{aboronat | iramos | pcarsi}@dsic.upv.es

Abstract. This paper presents an algebraic specification of the operational
semantics of part of the OCL 2.0 standard. This specification is used in a model
management tool that provides support for model-driven tasks within the
Eclipse platform. The algebraic specification of OCL has been developed in
Maude by using its parameterization mechanism, providing a suitable
modularization and making reuse easier. In this work, OCL can be used in the
Eclipse Modeling Framework to represent models in an algebraic setting and to
perform queries or constraints over software artefacts that can be represented as
models.

Keywords: OCL queries, Eclipse Modeling Framework, algebraic specification,
Model-Driven Engineering.

1 Introduction

Model-Driven Development is a field in Software Engineering that, for several years,
has been representing software artefacts as models in order to improve productivity,
quality, and economic incomes. Models provide a more abstract description of a
software artefact than the final code of the application. A model can be built by
defining concepts and relationships. The set of primitives that permit the definition of
these elements constitute what is called the metamodel of the model. The emergence
of important model-driven initiatives such as the Model-Driven Architecture [1],
supported by OMG, and the Software Factories [2], supported by Microsoft, ensures a
model-driven technology stock for the near future.

In the MDA context, the standard Meta-Object Facilities (MOF) [3] provides a
way to define metamodels. The standard proposal Query/Views/Transformations
(QVT) [4] will provide support for both transformations and queries. While model
transformation technology is being developed [5-7], the Object Constraint Language
(OCL) remains as the best choice for queries.

♦ This work was supported by the Spanish Government under the National Program for

Research, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

OCL [8] is a textual language that is defined as a standard “add-on” to the UML
standard. It is used to define constraints and queries on UML models, allowing the
definition of more precise and more useful models. It can also be used to provide
support for metamodeling (MOF-based and Domain Specific Metamodeling), model
transformation, Aspect-Oriented Modeling, extensions for behaviour specifications,
support for model testing and simulation, ontology development and validation for the
Semantic Web [9]. Despite its many advantages, while there is wide acceptance for
UML design in CASE tools, OCL lacks a well-suited technological support.

In this paper, we present an algebraic specification of generic OCL queries, by
using Maude [10], that can be used in a MOF-like industrial tool. The OCL algebraic
specification permits the study of formal features and their proof, and the execution of
OCL expressions as well. This algebraic specification has been developed in the
framework MOMENT (MOdel manageMENT) [11], which provides a set of generic
operators to deal with models. The MOMENT operators use OCL queries to perform
model queries and transformations.

The structure of the paper is as follows: Section 2 provides an example; Section 3
describes the algebraic specification of OCL, indicating the support for basic data
types and collection types, and the support for collection operations; Section 4
presents the integration of the algebraic specification of OCL within an industrial
modelling framework, indicating the automatic support for representing software
artefacts as algebraic specifications that can be queried; Section 5 presents some
related works; Section 6 provides some conclusions and ongoing work.

2 The Rdbms Metamodel

The Meta-Object Facility standard (MOF) provides a metadata management
framework and a set of metadata services to enable the development and
interoperability of model and metadata-driven systems. The main achievement of this
standard is the definition of a common terminology in the Model-Driven Architecture
initiative, which can be used conceptually in other model-driven approaches.

As an example, in this paper, we have taken the Rdbms metamodel that has been
provided in the QVT standard as case study. This metamodel provides some
primitives to define relational schemas as models. The metamodel can be considered a
UML model, as shown in Figure 1. Thus, the OCL-like specification that is presented
can also be used for queries over any software artefact that might be defined
following the MOF conceptual framework: metamodels, regular models, and
instances of models.

OCL invariants permit a more precise definition of a UML model by adding
constraints. In this case, we use OCL invariants to make the definition of the Rdbms
metamodel more precise. For instance, to define foreign keys, we must ensure that the
number of columns that participate in a foreign key must be the same as the number
of columns that participate in the corresponding referred primary key. In addition, the
type of the columns that participate in a foreign key must be equal to each
corresponding column (by order) of the referred primary key. This constraint is
expressed by means of the following invariant:

context ForeignKey:
inv: if (self.column->size() = self.refersTo.column->size()) then

 self.column->forAll(c:Column |
 self.refersTo.column-> at(self.column->indexOf(c)).type = c.type
)
 else false
 endif

Fig. 1. Rdbms metamodel

3 Algebraic Specification of Generic1 OCL Queries

In this section, we describe the parameterized algebraic specification of OCL that
permits the query of either metamodels or UML models.

3.1 Functional Modules in Maude

In Maude, functional modules describe data types and operations on them by means
of membership equational theories. Mathematically, such a theory can be described as
a pair (Σ, E ∪A), where: Σ is the signature that specifies the type structure (sorts,
subsorts, kinds, and overloaded operators); E is the collection of equations and
memberships declared in the functional module; and A is the collection of equational
attributes (associativity, commutativity, and so on) declared for the different
operators. Computation is the form of equational deduction in which equations are
used from left to right as simplification rules, with the rules being Church-Rosser and
terminating.

A signature in membership equational logic (MEL) is a triple Σ = (K, S, OP),
where: K represents a set of kinds; S= {Sk}k∈K represents a pairwise disjoint K-kinded

1 In this work, OCL genericity refers to the possibility of reusing the OCL specification for any

software artifact that can be represented as a model, including metamodels.

{ordered}

{ordered}

family of sets of sorts; and { } +×∈
=

KKkkkkkk
nn

opOP *
11),...(,... represents a set of many-

kinded operations. For a specific operation: op is the operation symbol; ki∈K+ (i=1..n)
are the argument sorts; and k is the range sort.

3.2 Algebraic Specification of OCL Types

Types in OCL are divided in basic data types, collection types, and user-defined
types. In this section, the algebraic support for the first two kinds of types is
presented.

3.2.1 Basic Data Types
In OCL, there are four basic data types [12] that have a direct correspondence to
Maude basic data types. In Table 1, we show the correspondences between OCL 2.0
and the Maude data type system and their corresponding primitives. In the table, when
the operations have different symbols in OCL and Maude, we indicate the Maude
symbol in brackets.

OCL 2.0 Maude Common operators
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi)
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs (abs), max, min
Real Float /, round (ceiling), floor
String String concat (+), size (length), substring(substr), = (==), <> (=/=)

Table 1. OCL and Maude data type correspondences

There are also differences in invoking the operations in OCL and in Maude. For
example, to invoke the size operator over a string a, we use dot notation: a.size();
while in Maude, we use the prefix notation: length(a).

The Maude data type system is richer than the OCL data type system, and provides
more types such as support for identifiers and rational numbers, and related
operations. Thus, Maude operations can also be used in OCL queries.

3.2.2 Collection Types
OCL provides four specific collection types that are defined as follows:

− A Set is a collection that contains instances of a valid OCL type, where order is not
relevant and duplicate elements are not allowed.

− An OrderedSet is a set whose elements are ordered.
− A Bag is a collection that may contain duplicate elements. Elements in a bag are

not ordered.
− A Sequence is a bag whose elements are ordered.

The OCL support has been specified generically in the parameterized module
OCL-SUPPORT(X :: TRIV), where the formal parameter X has the trivial theory as
type. The trivial theory only contains a sort Elt (referred to as X$Elt in the OCL
specification) that represents the sort of elements that can be contained in an OCL
collection. This sort represents the OCLAny type of the standard OCL specification.
The OCL-SUPPORT(X::TRIV) module imports the basic data types and provides the

constructors that are needed to define collections of elements. It provides collection
operators as well.

To take into account the uniqueness and order features of an OCL collection, we
introduce two intermediate sorts and their constructors (shown in Table 2):
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the
sort of the term that represents a set of elements that are not ordered by means of the
association and the commutativity attributes. Instead, the constructor of the sort
OrderedMagma{X} does not have the commutativity property, producing terms that
represent ordered concatenations of elements.

Table 2. Specification of groups of elements

Terms of the sort Magma{X} are used to define sets (line 4) and bags (line 8),
while terms of the sort OrderedMagma{X} are used in ordered sets (line 6) and
sequences (line 10). In Table 3, we show the Maude code that specifies the four types
of collections. In our specification, collections of collections are allowed by indicating
that one collection can be an element of another collection (line 2). The sort
Collection{X} can be considered as an abstract concept on the grounds that there is no
specific constructor for it. Each collection has a constant constructor that defines an
empty collection (lines 5,7, 9, 11).

Table 3. Specification of OCL collection types

In this specification, the uniqueness property of both the collection Set and the
collection OrderedSet is checked in the operations that join two collections: union,
intersection and including for Set, and union, append, prepend, insertAt and including
for OrderedSet.

A view has been defined for each Maude simple data type in order to deal with
collections of simple data types. For instance, to deal with collections of integers, the
following view is defined: view INT from TRIV to INT is sort Elt to Int . endv

This view is used to instantiate the OCL-SUPPORT(X) module as OCL-
SUPPORT(INT). This way, the following example is a valid collection of integers:
OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}}

1. sorts Collection{X} Set{X} OrderedSet{X} Bag{X} Sequence{X} .
2. subsort Collection{X} < X$Elt .
3. subsorts Set{X} OrderedSet{X} Bag{X} Sequence{X} < Collection{X} .
4. op Set{_} : Magma{X} -> Set{X} [ctor] .
5. op empty-set : -> Set{X} [ctor] .
6. op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] .
7. op empty-orderedset : -> OrderedSet{X} [ctor] .
8. op Bag{_} : Magma{X} -> Bag{X} [ctor] .
9. op empty-bag : -> Bag{X} [ctor] .
10. op Sequence{_} : OrderedMagma{X} -> Sequence{X} [ctor] .
11. op empty-sequence : -> Sequence{X} [ctor] .

1. sorts Magma{X} OrderedMagma{X} .
2. subsort X$Elt < Magma{X} .
3. subsort X$Elt < OrderedMagma{X} .
4. op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] .
5. op _::_ : OrderedMagma{X} OrderedMagma{X} -> OrderedMagma{X} [assoc ctor] .

3.3 OCL Collection Operations

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular
operations and loop operations or iterators. Regular operations provide common
functionality over collections. Loop operations or iterators permit looping over the
elements in a collection performing a specific action.

3.3.1 Regular Collection Operations

To specify the common operations, a classification of the operations has been
performed taking into account the return type of each operation (shown in Table 4).
Each kind of operation is identified by a sort. We define the OCL operations as
constant constructors of one of these sorts. For instance, the size operation, which
returns an integer, is defined as follows: op size : -> IntFun{X} [ctor] .

Collection operator symbols Iterator symbols Return type
Collection Set OrderedSet Bag Sequence Collection

Fun{X} Collection union, flatten,
including, excluding,
iterate

--,
inter-
secti-
on

--, insertAt,
append,
prepend

intersection insertAt,
append,
prepend

select, reject, any,
sortedBy, collect,
collectNested,
iterate

EltFun{X} Element first, last, at first, last, at
BoolFun{X} Boolean

value
includes, includesAll,
excludes,
excludesAll,
isEmtpy, notEmpty

 one, forAll,
forAll22, exists,
isUnique

IntFun{X} Integer
value

count, size, sum,
product

 indexOf indexOf

Table 4. OCL collection operations that have been specified

To make these operations work, two more elements are needed. In the signature, a
skeleton operator is needed to use operations in an OCL-like way. In the axiomatic
presentation, axioms are needed to define the operational semantics of each operation.

The skeleton of an operation defines its syntactical structure and can be reused for
several operations. For instance, to invoke the size operator in an OCL-like way, we
provide the following operator: op _->_ : Collection{X} IntFun{X} -> Int . ; where the first
argument is a collection, and the second argument is the corresponding operator
symbol. To invoke the size operator over a set A, we proceed as follows: A -> size .
The axiomatic definition of the operations defines the use of operation terms in the
skeleton constructor. For instance, the operational semantics of the operation size is
axiomatically defined for the sort Set{X} by using recursion as follows:

var N : X$Elt . var M : Magma{X} .
eq Set{ N , M } -> size = (Set{ M } -> size) + 1 .
eq Set{ N } -> size = 1 .
eq empty-set -> size = 0 .

2 The forAll2 operation has been included to provide support when two iterators are being used

in the forAll operation.

However, the same skeleton operator is used to define the size operator for the sort
Sequence{X}:

eq Sequence{ N :: OM } -> size = (Sequence{ OM } -> size) + 1 .
eq Sequence{ N } -> size = 1 .
eq empty-sequence -> size = 0 .
Nonetheless, we cannot use the count symbol (representing the count operator) as a

term in the above skeleton constructor because it is not defined in the OCL axiomatic
presentation. This is due to the fact that the count operator has an argument.

3.4.2 Loop Operations or Iterators

An iterator permits the loop over the elements of a collection. Every loop operation
has an OCL expression as parameter. This is called the body, or body parameter, of
the operation. As a guiding example, we use a standard OCL expression that permits
obtaining the odd numbers from a set of integers:

Set{1,2,3,4,5,6} -> select(i | i.mod(2) <> 0)
In this expression, select is the iterator operation while the expression (i | i.mod(2)

<> 0) is the body. A body expression may have arguments to process external
information. In the OCL algebraic specification, these arguments are considered by
means of the sorts Parameter and ParameterList. Parameter has a polymorphic
constructor that allows the use of any Maude data type:
op ?_ : Universal -> Parameter [ctor poly (1)] .

This constructor allows defining the following examples as valid parameters: ? 1, ?
1.0, ? ‘a, ? “a”, ? true. To obtain the actual value that is enclosed in a parameter, the
following casting operators can be used: asCollection, asElt, asInt, asFloat, asString,
asBool, asQid. For example, the following expression obtains the corresponding
integer value: red (? 1 :: asInt) .

ParameterList is a list of Parameter terms. The Parameter sort is subsort of the
ParameterList sort indicating that a parameter list can be constituted by a single
parameter. There are three constructors for lists (shown in Table 5): the Parameter
constructor; the empty-params is the constant that constitutes an empty list; and the
concatenation operator, which builds a list by means of blank spaces, in which the
empty-params constant has the identity property. Thus, ? 1 ? “a” is a valid parameter
list.

Table 5. Constructors for the the ParameterList sort.

Both iterator operations and body expressions are considered in the algebraic
specification separately. This separation is needed to simulate higher-order functions
in Maude by considering body functions as terms that can be passed as arguments to
iterator operations. More precisely, the body of an iterator is associated to a symbol,
which is defined as a term of a Body{X}. Thus, the iterator specification is defined
independently of the specification of the body. To specify iterators and body
operations, the following elements are included in the specification:
− Body sorts. Several sorts of body functions can be defined depending on their

resulting type, as in collection operations. The sorts that can be used are the

subsort Parameter < ParameterList .
op empty-params : -> ParameterList [ctor] .
op : Parameter ParameterList -> ParameterList [ctor id: empty-params] .

following: Body{X} (for functions that return a collection or an element);
BoolBody{X} (for boolean functions); RatBody{X} (for functions that return a
rational or an integer value); FloatBody{X} (for functions that return a float value);
StringBody{X} (for functions that return a string value); and IdBody{X} (for
functions that return a Qid value).

− Body symbols. These are the names of the functions. They are not included in the
OCL specification since they must be defined by the user depending on the desired
functionality. For instance, to define a body function, called isOdd, that returns an
boolean value, we use the following constructor:

 op isOdd : -> BoolBody{RAT} [ctor] .
− Body skeleton constructor. To provide the way body functions must be defined,

skeleton constructors are provided for each body sort in the following way:
op _::_`(_;_`) : BodyElt{X} BoolBody{X} ParameterList Collection{X} -> Bool .

In all of them, the first argument is a term that represents either a magma of
elements or an ordered magma, the second is the corresponding body symbol, the
third one is a variant list of parameters that can be empty, and the last one is the
whole initial collection to which the first argument belongs.

− Body axiomatic definition. This constitutes the specification of the body function
out of the iterator operation. This makes a difference between the standard OCL
specification and our OCL algebraic specification. To define a body function, the
axioms must be provided by the user in Maude notation. For instance, to define a
boolean function that determines whether an integer number is odd or not using the
previously defined isOdd symbol, we define the following axiom:

var intN : Int . var intCol : Collection{RAT} . var PL : ParameterList .
eq intN :: isOdd (PL ; intCol) = ((intN rem 2) =/= 0) .

Where intN is an integer variable, intCol is a collection of rational numbers

(also integer numbers), and PL is the list of parameters, which is ignored in this
case.

− Sorts of iterators. These are the same sorts of the operations that classify collection
operations by their return type.

− Iterator symbols. The symbol of the iterators corresponds to the name of the
iterators that are defined in the specification. The iterators that are considered in
our specification are presented in Table 4, indicating their corresponding sorts.

− Iterator skeleton constructors. They permit both the invocation of the iterator in an
OCL-like way and the definition of iterators as higher-order functions that have a
body operation as first argument. For instance, the skeleton constructor for the
select iterator is defined as follows:

op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} ->
Collection{X} .

Where the first argument is the collection to be looped, the second argument is

an iterator symbol, the third argument is the body operation, the fourth argument is
a list of arguments for the body operation, and the fifth argument is the proper
collection that is looped. The fifth argument is needed due to the free side-effect
that characterizes Maude and is useful when the collection must be navigated in the

body operation. When the iterator is processed, if this argument is not added, the
recursion mechanism consumes the elements of the collection, and queries over the
whole collection would not be complete.

To invoke the select iterator over a set of integers with the body isOdd we use:
Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-set) .

− Iterator axiomatic specification. It defines the operational semantics of iterator
operations independently of body operations. This fact permits the reuse of the
algebraic specification of iterator operations simulating them as higher-order
functions. Three axioms constitute the algebraic specification of the select operator
for sets (as shown in Maude notation in Table 6). These are the arguments of
select: BB is a variable that contains the boolean body, PL is a parameter list for
the body operator, and Col is the original set. The first axiom considers the
recursion case where there is more than one element in the set. If the body function
validates to a true value, the element is added to the resulting set. Finally, the
recursion over the rest of the elements continues. The second axiom considers the
recursion case when only one element remains in the set so that the recursive trail
ends. The third axiom considers the case where the set is empty.

When the select operation is invoked, Maude returns the following result:
reduce in SOUP : Set{1,2,3,4,5,6}->select(isOdd ; empty-params ; empty-set) .
rewrites: 33 in -285521343301ms cpu (0ms real) (~ rewrites/second)
result Set{RAT}: Set{1,3,5}

Table 6. Axiomatic specification of the select operation for sets.

4 Algebraic specification of metamodels and models

The advantage of OCL is that user-defined types can be used in expressions to
perform queries on software artefacts (namely models). User-defined types are the
types that can be used in a model: classes, associations, enumerations, and so on. One
of the keys to success in the use of the OCL algebraic specification is the integration
with an industrial modelling environment. In this way, OCL expressions can be
evaluated in a graphical model without having to prepare the information in a specific
format manually.

 In our case, we have chosen the Eclipse Modeling Framework (EMF). EMF is a
modeling environment that is plugged into the Eclipse platform and provides a sort of
implementation of the MOF. It brings code generation capabilities: for UML-like
models, it generates the final structural code of the application; for metamodels, it
generates a default tree-like editor that permits the definition of domain-specific
models and the validation of the corresponding metamodel. EMF enables the
automatic importation of software artefacts from heterogeneous data sources: UML

eq Set{ N , M } -> select (BB ; PL ; Col) = if (N :: BB (PL ; Col)) then Set{ N } -> including ((Set{ M } -> select (BB ; PL ; Col))) -> flatten
else Set{ M } -> select (BB ; PL ; Col) fi .

eq Set{ N } -> select (BB ; PL ; Col) = if (N :: BB (PL ; Col)) then Set{ N } else empty-set fi .
eq empty-set -> select (BB ; PL ; Col) = empty-set .

models (by means of visual modeling environments), relational schemas of any
relational database management system (through the Rational Rose tool), and XML
schemas. Therefore, EMF has become an industrial framework for MDA.

To perform OCL queries over EMF software artefacts, two types of projection
mechanisms have been specified. On the one hand, we have defined a projection
mechanism that obtains the algebraic specification3 that corresponds to a specific
Ecore model automatically, by applying generative programming techniques. On the
other hand, another projection mechanism permits us to project an Ecore model
instance as a term of the algebra that corresponds to the Ecore model.

As shown in Fig. 2, an Ecore model may represent either a metamodel at the M2-
layer (for instance, the UML metamodel) or a model at the M1-layer (for instance, a
UML model). Similarly, an Ecore model instance may represent either a model that
conforms to a metamodel at the M1-layer (for instance, a UML model) or a model
instance at the M0-layer (for instance, the instances of a UML model). From now on,
the ocl support is explained by using the example of the UML model, although it is
exactly the same to define OCL queries over Ecore metamodels.

Fig. 2. EMF and Maude conceptual integration

4.1. A metamodel as an algebraic specification

To query a metamodel, it must be represented as an algebraic specification in Maude.
This specification is split in two parts: the generic OCL specification that is defined in
the parameterized module OCL-SUPPORT(X::TRIV) and the user-defined types in
the model.

3 The algebraic specification that is generated for a given metamodel (defined in EMF as an

Ecore model) permits the representation of models as algebraic terms. Thus, models can be
manipulated by our model management operators. Algebraic specifications of this kind do
not specify operational semantics for the concepts of the metamodel, they only permit the
representation of information for model management issues.

Algebraic
specification
Algebraic

specification

TermTerm

EMF Maude

Universal
Algebra

Universal
AlgebraM2-layer

M1-layer

M0-layer

MOMENT
Projectors

M3-layer

M2-layer

M1-layer

Ecore

Ecore
Model

Ecore
Model

Instance

4.1.1 The algebraic signature of a metamodel

A metamodel in EMF is an Ecore model, which is mainly constituted by EClass
instances (informally called classes) that are related to each other by means of
inheritance relationships and EReference instances (informally called references in
Ecore and associations in UML). They are used to generate an algebraic specification
that is used as an actual parameter for the OCL-SUPPORT(X::TRIV) module.
Informally, the following tasks are involved in the generation of Maude code from a
model:
− Signature generation: An Ecore class is constituted by attributes and references.

This information is used to generate a sort that represents the collection of
instances of this class and a constructor, whose arguments are: an internal
identifier, a group of arguments that represent the attributes (basic data types) and a
group of identifier collections (representing references). For instance, the Table
class in Fig. 1 is used to generate the following Maude code:
sort Table .
op `(Table_______`) : Qid String String OrderedSet {QID} OrderedSet {QID} OrderedSet {QID}
OrderedSet {QID} -> rdbms-Table [ctor] .
where the first argument is the internal identifier of the instance, the second
argument is the inherited name attribute, the third argument is the inherited kind
attribute, the fourth argument is the key reference (UML role), the fifth argument is
the foreignKey reference, the sixth argument is the column reference and the
seventh argument is the schema reference. This template is only applied to classes
that are not abstract. When a class is defined as abstract, the code only contains the
declaration of the code and no constructor is generated, indicating that this class
cannot be instantiated.

− Kind structure generation: class inheritance is represented by means of subsort
relationships in Maude. In the example, the Table class is a specialization of the
RModelElement class. In the Maude specification, the sort Table is defined as
subsort of the RModelElement sort.

− Kind unification: all the sorts that are generated in an algebraic specification are
encapsulated within the same kind, by adding a root supersort, called rdbmsNode
(where rdbms is the name of the package that contains the model definition). This
sort permits the definition of the view between the model algebraic specification
and the formal parameter of the OCL-SUPPORT(X::TRIV) module. All the sorts
that have no supersort must be related to root supersort by means of a subsort
relationship. This allows all the terms that represent instances of model classes to
belong to this sort, thereby becoming elements of a collection.

− Signature generation: the generated elements applying the previous templates are
encapsulated within a module. The automatically generated module for the
example model is called sigrdbms.

− View generation: to use the signature that is generated for a model as actual
parameter for the module OCL-SUPPORT(X::TRIV), a view is defined containing
the mapping between the Elt sort of the TRIV theory and the generated root sort for
the model. The generated view for the model in the example is as follows:
view rdbms from TRIV to sigrdbms is sort Elt to rdbmsNode . endv

4.1.2 The algebraic specification of a metamodel

A model that conforms a metamodel is represented as a set of instances of the classes
that constitute the metamodel. To define models as sets, the signature that is obtained
from the definition of the metamodel is used as actual parameter for the parameterized
module that contains the generic algebraic specification of OCL by means of the
generated view.

The instantiation of the OCL-SUPPORT(X::TRIV) module is contained in another
module, called sprdbms in the example. This module also contains the operations that
are needed to navigate a model by means of either the attributes or the roles of a class.

The operation to navigate a reference (UML role) has the following skeleton:
op _::_`(_`) : X$Elt Fun{X} Collection{X} -> Collection{X} [ctor] .
where X$Elt represents an element of the model (a class instance), Fun{X} represents
the symbol of the role, the Collection{X} argument represents the model to be
navigated, and the Collection{X} return parameter represents the collection of class
instances that is obtained by means of the navigation operation. For example, to
navigate through the reference column of a Table class instance, called t, of the a
relational schema, called RdbmsSchema, we use the following expression:
t :: column (RdbmsSchema)

The operation to obtain the value of an attribute has the following skeletons,
depending on the attribute type:
op _::_ : X$Elt YFun{X} -> Y [ctor] . (where Y = {Int, Float, Bool, String, Qid})

For example, to obtain the value of the name attribute of a Table instance, called t,
we use the following expression:
t :: name

Finally, the module sprdbms contains all the operations that are needed to define a
relational schema (constructors to define collections, to define basic data type values
and user-defined types) and to apply OCL queries to any relational model (collection
operations, iterators, and user-defined navigation operations). Therefore, the
membership equational theory that permits the query of the instances of a specific
model is defined by the tuple (SOCL, OPOCL ∪ OPQUERY, EOCL), where:

SOCL = SSimpleDataType ∪ SCollections ∪ SCollectionOperations ∪ SIterators ∪ SUserDefinedClasses

OPOCL = OPSimpleDataTypes ∪ OPCollections ∪ OPUserDefinedTypes
OPQUERY = OPCollectionOperations ∪ OPIterators ∪ OPUserDefinedNavigationOperations

EOCL = ECollectionOperators ∪ EIterators ∪ EUserDefinedNavigationOperations

4.2. A relational model as an algebraic term

In this paper, OCL queries are performed over models. The definition of a model can
be graphically performed by means of EMF. Then, it can be automatically serialized
to a term that represents a set of instances of the classes that constitute the model. The
serialization uses the algebraic specification that is generated for a model as
mentioned above.

For example, a relational schema that conforms to the Rdbms metamodel (shown
in Fig. 3) is serialized as a set (shown in Fig. 4), where all the elements are instances
of the classes of the metamodel.

table1 : Table
name : string = PurchaseOrder_tid
kind : string
type : string = NUMBER

column1 : Column

name : string = PurchaseOrder_pk
kind : string

key1 : Key

name : string = PurchaseOrder
kind : string

schema1 : Schema

Fig. 3. Object diagram that represents a relational schema that conforms to the Rdbms

metamodel defined as a UML model in Fig. 1

Set {
(rdbms-Schema 'schema1 "purchaseOrder" "" OrderedSet { 'table1 }),
(rdbms-Table 'table1 "PurchaseOrder" "" OrderedSet { 'key1 } empty-orderedset OrderedSet {
'column1 } OrderedSet {‘schema1 }),
(rdbms-Key 'key1 "PurchaseOrder_pk" "" OrderedSet {'table1 } OrderedSet { 'column1 }),
(rdbms-Column 'column1 "PurchaseOrder_tid" "" "NUMBER" empty-orderedset OrderedSet { 'key1 }
OrderedSet {'table1 })

}

Fig. 4. Algebraic representation of the relational schema shown in Fig. 3.

The internal structure of a term is transparent to the user of the algebraic
specification due to the navigation operations, which permit the user to navigate in an
OCL-like way throughout the roles and attributes of the objects of the model instance.

Therefore, the invariant in Section 2 can be written by defining the body
expression of the forAll iterator as a body operation. The body operation inv::body0
defines the body expression of the forAll iterator, indicating that the types of the
columns of a specific foreign key must be equal to the types of the corresponding
columns of the referred primary key. The body operation inv1 defines the body of the
invariant, checking the size of the column collections that belong to the foreign key
and to the referred primary key and invoking the forAll operation. The code generated
for both body expressions is as follows:
var column1 : rdbms-Column . var self : rdbmsNode .

op inv::body0 : -> BoolBody{rdbms} [ctor].
ceq column1 :: inv::body0 (? self ; rdbmsModel) =

(((((self :: refersTo (rdbmsModel) :: column (rdbmsModel)) -> asSequence) -> at(
 ((self :: column (rdbmsModel)) -> indexOf(column1))
)) :: type) == (column1 :: type))

if column1 :: rdbms-Column .
eq column1 :: inv::body0 (PL ; rdbmsModel) = false [owise].

op inv1 : -> BoolBody{rdbms} [ctor] .
ceq self :: inv1 (PL ; rdbmsModel) =

(if (((self :: column (rdbmsModel)) -> size) == ((self :: refersTo (rdbmsModel) :: column (
rdbmsModel)) -> size)) then
 ((self :: column (rdbmsModel)) -> forAll (inv::body0 ; ? self ; rdbmsModel))
else
 false
fi)

if self :: rdbms-ForeignKey .
eq self :: inv1 (PL ; rdbmsModel) = false [owise] .

The invariant is checked by selecting the instances of the context class and by
applying the invariant body by means of a forAll iterator as follows:
red rdbms-instance -> select (oclIsTypeOf ; ? "ForeignKey" ; rdbms-instance) -> forAll(inv1 ; empty-
params ; rdbms-instance) .

5 Related works

Although OCL is not as well supported as UML in some CASE tools, there is a
growing interest in providing support for OCL in order to achieve different goals. In
[13], several tools that support OCL are studied. Taking them and others into account,
some technological examples, which are classified by their main goal, are provided:
− Model transformation: MOMENT, ATL, YATL.
− Model verification: the KeY System.
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit, the

Kent OCL tool.
− Code generation (also for requirements validation): Octopus, OCLE.
− OCL Testing: HOL/OCL.

Nevertheless, only a few of them rely on formal methods to provide support for the
operational semantics of OCL, and even fewer tools are integrated in (commercial)
CASE tools. We focus on some tools that rely on formal methods in this section.

The USE tool [14] provides interactive validation of OCL constraints over a
model. This tool reads the input model and the OCL constraints from textual
resources, supporting class diagrams, object diagrams and sequence diagrams.
Afterwards, objects and links can be graphically created to define a snapshot of a
running system. This tool has been extended for the automatic generation of test cases
and validation cases [15].

The KeY system [16] provides functionality for formal specification and deductive
verification within a commercial CASE tool (Together Control Center). In this
approach, the user defines a software artefact in UML that can be annotated with OCL
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic
logic for Java [17] that can be reduced by means of an interactive theorem prover.

The ITP/OCL tool [18] provides automatic validation of UML static class
diagrams with respect to OCL constraints. It provides an algebraic OCL specification
using Maude, where UML class diagrams and object diagrams are formalized by
means of algebraic specifications in membership equational logic and where OCL
constraints are defined as formulas in membership equational logic theories. A
graphical front-end is being developed for the ITP/OCL tool, which permits the
definition of class diagrams and the definition of correct object diagrams.

In these last three discussed approaches, only UML diagrams are considered for
validating OCL expressions. In the MOMENT-OCL specification, OCL queries can
be automatically applied either to metamodels or to models that may be defined in
EMF by making use of the Maude parameterization mechanism, following a more
automated model-driven oriented approach. In our approach, while Maude is used to
execute OCL expressions and to guarantee formal features of the expressions, the

OCL expressions can be applied to graphical model-based software artefacts through
the EMF.

6 Conclusions and Further Work

OCL is becoming a de-facto standard for defining constraints and queries in the
Model-Driven Engineering field. The number of tools that provide support for this
language is growing, and although the operational semantics of OCL is said to be
formal, only a few tools rely on formal methods to define its operational semantics.

In this paper, we present an algebraic specification of part of the operational
semantics of OCL 2.0 from an implementation point of view. This specification takes
advantage of the parameterization mechanism and the attribute theory of Maude and
provides a way to simulate collection operations as higher-order functions for the sake
of reuse.

This specification is used to perform model queries in the EMF and to represent
EMF software artefacts as algebraic specifications or as terms that can be manipulated
by means of model management operators [19]. The OCL specification has been
developed generically so that it can be used for any kind of metamodels, models or
model instances. These operators use OCL queries to specify model transformations
that can be run in Maude as detailed in [5]. Therefore, not only can OCL be studied in
an algebraic setting, it can also be applied in the well-known modelling environment
EMF.

As the syntax that was obtained for OCL in Maude is not complete standard-
compliant, we are developing an OCL compiler to Maude code. In this way, the gap
between OCL-practitioners and the algebraic specification will be transparent. Further
work consists in exploiting the formal features of the OCL specification from a more-
theoretical point of view and its application to real case studies.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. (2003)

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)

3. OMG: Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15. (2004)
4. OMG: MOF 2.0 QVT final adopted specification (ptc/05-11-01). (2005)
5. Boronat, A., Carsí, J.A., Ramos, I.: Algebraic Specification of a Model Transformation

Engine. In: Proceedings of Fundamental Approaches to Software Engineering, FASE'06,
LNCS, Vol. 3922. Springer Vienna, Austria (2006)

6. Bézivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In: Proceedings of
OOPSLA 2003 Workshop, Anaheim, California (2003)

7. The Model Transformation Framework: http://www.alphaworks.ibm.com/tech/mtf
8. Warmer, J., Kleppe, A.: The Object Constraint Language, Second Edition, Getting Your

Models Ready for MDA. Addison-Wesley (2004)

9. Chiorean, D., Bortes, M., Corutiu, D.: Proposals for a Widespread Use of OCL. In:
Proceedings of Proceedings of the MoDELS'05 Conference Workshop on Tool Support for
OCL and Related Formalisms - Needs and Trends, Technical Report LGL-REPORT-2005-
001, Vol. EPFL, Montego Bay, Jamaica (2005) 68--82

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:
Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285 (2002)
187-243

11. The MOMENT Project: http://moment.dsic.upv.es
12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.:

Maude 2.2 manual and examples. (2005) http://maude.cs.uiuc.edu/maude2-manual/
13. Toval, A., Requena, V., Fernández, J.L.: Emerging OCL tools. Software and System

Modeling 2 (2003) 248-261
14. Richters, M.: The USE tool: A UML-based Specification Environment. (2001)

http://www.db.informatik.uni-bremen.de/projects/USE/
15. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by Automatic

Snapshot Generation. In: Proceedings of UML 2003 - The Unified Modeling Language,
Modeling Languages and Applications, 6th International Conference. Springer, San
Francisco, CA, USA (2003) 265-279

16. Ahrendt, W., Baar, T., Beckert, B., Giese, M., Hähnle, R., Menzel, W., Mostowski, W.,
Schmitt, P.H.: The KeY System: Integrating Object-Oriented Design and Formal Methods.
In: Proceedings of Fundamental Approaches to Software Engineering. 5th International
Conference, FASE 20022306. Springer, Grenoble, France (2002) 327-330

17. Beckert, B.: A Dynamic Logic for Java Card. In: Proceedings of Proc. 2nd ECOOP
Workshop on Formal Techniques for Java Programs, Cannes, France (2000)

18. Egea, M., Clavel, M.: The ITP/OCL tool. (2006) http://maude.sip.ucm.es/itp/ocl/
19. Boronat, A., Carsí, J.A., Ramos, I.: Automatic Support for Traceability in a Generic Model

Management Framework. In: Proceedings of Model Driven Architecture - Foundations and
Applications, First European Conference, ECMDA-FA 2005, LNCS, Vol. 3748. Springer
Nuremberg, Germany (2005) 316-330

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

