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Abstract. Model management aims at solving problems that stem from model 
representation and its manipulation by considering models as first-class citizens 
that are manipulated by means of generic operators. MOMENT is a prototype 
that supports generic model management using an algebraic approach within 
the four-layered metamodeling culture of MOF [1]. In this paper, we focus on 
the automatic generation of schemas that belong to different metamodels, using 
a term-rewriting system approach. We present the type system of the algebra 
that we use to represent models in the MOMENT prototype, and we describe 
our generic operator that automatically translates schemas between different 
metamodels: the operator generate. This algebra has been implemented using 
the functional language F#, which allows us to validate the correctness of our 
approach. 
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1. Introduction 

Nowadays, many companies are working with software products that were 
developed several years ago. Such applications have undergone changes to adapt to 
new requirements, but the lack of a specification makes this task more and more 
difficult. Software reverse engineering is the process that analyzes an application in 
an attempt to create a representation of it at a higher level of abstraction than the 
source code [2]. Therefore, reverse engineering is a process of design recovery. There 
are several CASE tools that support reverse engineering, such as Rational Rose [3], 
System Architect [4] or DB-Main [5]. These tools provide wizards that build a design 
specification of the data structure from a relational database or even wizards that 
detect and to organize functional services in class diagrams from the source code of 
the application. 

Although these tools support automatic reverse engineering onto specific design 
methods, such as relational or object-oriented (OO for short), they do not take into 
account a change in the use of design methods. For instance, an application could 
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have been developed in the early 90s following the structured paradigm and the 
relational model for the database. Now, the application of a reverse engineering 
mechanism to obtain the relational schema of the database might not be the best 
solution to obtain an abstract description of the application. The development 
company will likely use a newer paradigm to design the software. In such a case, the 
research field of model management provides advantages to improve the reverse 
engineering process by manipulating data models. 

A model is an abstract representation of the reality that enables communication 
among heterogeneous stakeholders so that they can understand each other. In our 
approach, a model is a structure that abstracts a design artifact such as a database 
schema, an OO conceptual schema, an interface definition, an XML DTD, or a 
semantic network [6]. Model management aims at solving problems with model 
representation and its manipulation by considering models as first-class citizens that 
are manipulated by means of abstract operators. The MOMENT (MOdel 
manageMENT) platform is a tool that allows model representation and manipulation 
by means of an algebraic approach. This approach allows the automation of model 
manipulation tasks, which can improve a reverse engineering process such as schema 
or model generation. 

Focusing on this point, we introduce an algebraic approach to automatically 
generate schemas among different metamodels within the MOMENT prototype. The 
paper is structured as follows: Section 2 presents related work to contextualize our 
schema generation approach; Section 3 offers an application example; Section 4 
presents an overview of the MOMENT prototype; Section 5 explains the algebraic 
operator generate and how it works; Section 6 presents some conclusions and future 
work. 

2. Related work 

Data reverse engineering can be treated generically from the perspective of model 
management. In this sense, the essentials of a model theory for generic schema 
management are presented in [7]. This model theory is applicable to a variety of data 
models  such as the relational, object-oriented, and XML models, allowing model 
transformations by means of categorical morphisms. RONDO [8] is a tool based on 
this approach. It represents  models by means of a graph theory and a set of high level 
operators that manipulate such models and mappings between them through a 
category theory. Models are translated into graphs by means of specific converters for 
each metamodel. These algebraic operators are based on imperative algorithms , such 
as CUPID [11]. CUPID is an algorithm for matching schemas in the RONDO tool. 

In the MOMENT platform, we use the framework that is proposed in the Meta-
Object Facility specification (MOF). MOF is one of the OMG family of standards for 
modeling distributed software architectures and systems . It defines an abstract 
language and a four-layered framework for specifying, constructing and managing 
neutral technology metamodels. A metamodel is an abstract language for some kinds 
of metadata. MOF defines a framework for implementing repositories that hold the 
metadata described by the metamodels. This framework has inspired our platform for 



  

model management although we do not use the same vocabulary to describe 
metamodels. In the case of MOF, the two most abstract layers offer a higher view of a 
specific model involving metamodel management. 

3. Motivating example 

Consider a car maintenance company that has worked a long time for a large car 
dealership. The maintenance company has always worked with an old C application 
where the information is stored in a simple relational database that does not even 
consider integrity constraints. The car dealership has recently acquired the car 
maintenance company and the president has decided to migrate the old application to 
a new OO technology in order to improve maintenance and efficiency. Therefore, the 
target application will be developed by means of an OO programming language. 

Suppose that a part of the original database is a table Invoice, as shown in Fig. 1. 
To obtain a class that is semantically equivalent to this table, a designer usually builds 
it manually, which involves high development costs since the entire initial database is 
taken into account. What is worse is that this process is error-prone due to the human 
factor. 

 
 
 

Fig. 1. Example of class generation from a relational table 

4. MOMENT overview 

The MOMENT (MOdel manageMENT) platform is a tool that allows model 
representation and manipulation by means of an algebraic approach. We use the 
expressiveness of the algebra, which the platform is based on, to define and represent 
a model as a formal term. Operators of the algebra, also called morphisms, perform 
transformations over the terms of the algebra. 

The MOMENT platform uses several metadata layers to describe any kind of 
information including new metadata types. This architecture is based on both the 
classical four-layer metamodeling architecture, following standards such as ISO [9] 
and CDIF [10], and on the more modern four-layer framework proposed in the MOF 
specification [1]. In our work, we structure the platform in four abstract layers: 
− The M0-layer collects the examples of all the models, i.e., it holds the information 

that is described by a data mo del of the M1-layer. 
− The M1-layer contains the metadata that describes data in the M0-layer and 

aggregates it by means of models. This layer provides services to collect examples 
of a reality in the lowest layer. 

− The M2-layer contains the descriptions (meta-metadata) that define the structure 
and semantics of the metadata located at the M1-layer. This layer groups meta-
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metadata as metamodels.  A metamodel is an “abstract language” that describes 
different kinds of data. The M2-layer provides services to manage models in the 
next lower layer. 

− The M3-layer is the platform core, containing services to specify any metamodel 
with the same common representation mechanism. It is the most abstract layer in 
the platform. It contains the description of the structure and the semantics of the 
meta-metadata, which is located at the M2-layer. This layer provides the “abstract 
language” to define different kinds of metadata. 
We have developed a prototype of MOMENT that runs on the .NET platform. The 

core of the prototype is  an algebra, which provides a set of sorts and constructors to 
define models and a set of operators to manipulate them. To implement this algebra, 
we have used the F# programming [13] language for two main reasons: to bring a 
formal model management approach closer to an industrial programming 
environment, such as .NET; and to benefit from the functional programming 
advantages , such as independence from the control logics and a strong inference type. 
F# is a version of the Objective Caml programming language  [12] on the .NET 
platform.   

4.1. The MOMENT algebra 

The MOMENT algebra aims to represent models of any kind as algebraic terms in 
order to automate model transformation tasks in a precise, formal way. Reaching this 
objective implies choosing a basic specification language that permits us to describe 
any piece of data. We have chosen the Resource Description Language (RDF) [14] 
for this purpose. RDF is an emergent standard proposed by the World Wide Web 
Consortium (W3C) that is becoming the “de facto” standard for the Semantic Web 
[15]. This language provides the foundation for metadata interoperability across 
different web resource description communities.  

This algebra offers the core services of the MOMENT platform and is used to 
define its four meta-layers. The algebra consists of two main elements: sorts and their 
operations. Such operations consist of both constructors, which allow for the 
definition of the structure of the platform and the representation of the models, and 
operators, which perform management tasks over the models defined in the platform. 
Four main sorts permit the definition of a model as a term: 
1. Concept 

A concept represents an RDF resource and is identified by a URI. It defines an 
entity that can be described by means of properties. The constructor of this sort is 
expressed in F# notation as follows: 
 
where NilConcept  represents a null concept term; the first argument of the 

constructor Concept is a term of the sort Concept that represents its metaconcept in 
the next upper abstraction layer, and the second argument is its identifier.  
2. Property 

To define the relationships that relate a subject element to an object element, we 
focus on the RDF statement structure. Such relationships are specified by means of 
the Property sort .  

Concept = NilConcept | Concept of (Concept * string) 



  

We express the constructor of this sort in F# notation, as follows: 
where NilProperty represents the null property term and the arguments of the 
constructor Property are the following elements, in order: 

− Parent property indicating its type. 
− URI that identifies the predicate of the property. 
− Minimum cardinality of the property that indicates the minimum amount of 

instances of the range concept, which must be related to the subject node. 
− Maximum cardinality of the property that indicates the maximum amount of 

instances of the range concept that can be related to the subject node. 
− Subject element that receives the property. This  can be a concept or another 

property, because a property may involve other properties.  
− Object element that constitutes the value of the property. A property cannot be 

the object of another property for two reasons: it would make the RDF 
specification more difficult to understand, and it does not provide additional 
information. 

3. Schema 
In our context, a schema term represents a collection of concepts and properties 
that describe such concepts. 

4. Level 
A level term represents an abstraction layer in the platform. Four terms of this sort 
constitute the four-layer structure of the platform. The term M3-layer represents 
the most abstract layer in the platform and contains the MOMENT schema. This 
schema contains the term Concept and the term Property; the latter relates two 
concept terms, constituting the minimalist structure that we use to represent a 
model at a lower layer. 
To apply our schema generation approach, we show how we can represent the 

relational and OO metamodels at the M2-layer, and how we can represent their 
schemas (also called models ) at the M1-layer. We only describe the essentials of the 
metamodels that will be useful to present the operator generate in Section 5. The 
Relational Metamodel  is a schema term that contains the concepts and properties that 
constitute the terminology to define a relational schema. Table and Column are 
represented by means of concept terms , which are related to each other through a 
property table_column  in the relational metamodel at the M2-layer. This metamodel 
allows the definition of the concept Invoice as a table by means of the operator 
new_concept. In an identical way, the concepts Code and Date are defined as column 
terms, which are related to a table by means of instances of the property table_column 
defined at the M2-layer. 

In a similar manner, the OO Metamodel is defined at the M2-layer, allowing the 
definition of the OO schema term that represents the OO model of the motivating 
example at the M1-layer. 

5. Algebraic schema generation: the operator generate 

The operator generate is a morphism that permits the translation of a model of a 
specific metamodel into a model of a different metamodel. In our case study, we 

Property = NilProperty 
| Property of (Property * string * Cardinality * Cardinality * Node * Concept) 



 

generate an OO conceptual schema from a relational schema, both of which are 
specified by means of terms of our algebra sorts. 

This morphism is defined at the M2-layer using mappings between elements of two 
different metamodels. These mappings are instances of the MOMENTEquivalence 
property defined at the M3-layer and indicate equivalence relationships between 
concepts of the two metamodels . These mappings must be defined by the user. 

In the following sections, we explain the definition of equivalence mappings 
between elements of the two metamodels used in the motivating example. Then, we 
present the set of functions that define the generic morphism generate. Finally, we 
indicate the specific axioms that we have implemented in F# to support the schema 
generation between the relational and the OO metamodels. 

5.1. Metamodel equivalence mappings 

The metamodel equivalence mappings are instances of the MOMENTEquivalence 
property of the M3-layer. They permit the establishment of correspondences between 
concepts of two different metamodels indicating that they represent either a similar 
semantic meaning in different metamodels  or model definition vocabularies. 

There are two kinds of equivalence mappings: 
a) Simple mappings, which define a simple correspondence between two concepts 

that belong to different metamodels; for instance, between a table and a class, or 
between a column of a table and an attribute of a class. 

b) Complex mappings, which define correspondences between elements of a source 
metamodel and a target metamodel. These mappings relate two structures of 
concepts that represent a similar semantic meaning. For instance, to define an 
equivalence relationship between a foreign key of the relational metamodel and an 
aggregation of the UML metamodel, we have to relate the foreign key, the unique 
constraint and the not null value constraint concepts to the aggregation concept. 
This is because all three of these concepts of the relational metamodel provide the 
necessary knowledge to define an aggregation between two classes in the UML 
metamodel, such as the cardinalities of the aggregation. 
In this paper, we focus on simple mappings, presenting a generic morphism to use 

at the M1-layer in the next section. 

5.2. The morphism generate 

To translate a schema of a source metamodel into another schema of a target 
metamodel, we use the morphism generate. This morphism is applied to a schema 
term of the source metamodel and defines a new schema of the target metamodel.  
Then, it checks all the concepts of the source schema one by one, generating the 
corresponding concept in the target schema in each case. 

To process a concept, the operator generate makes use of axioms or rewriting 
rules. Each one of them is formed by two kinds of functions: a condition and a 
generation function. On the one hand, the condition function checks the properties of 
a concept in order to select which generation function should be applied. These 



  

conditions take into account the precedence order that exists between the concepts of 
a specific metamodel when this order is  used to define a model. For instance, when 
we define a relational schema, we cannot define a column if the table that it belongs 
to is not defined previously. On the other hand, the generation function implies the 
definition of concepts and properties in the target schema by following four steps, as 
shown in Fig. 2: 
1. The concept is reified in its metaconcept; that is , if the concept to be processed is 

the table Invoice, we obtain the metaconcept Table of the relational metamodel. 
2. Once we know the corresponding metaconcept of the source metamodel, we query 

the equivalence that relates it to a concept of the target metamodel. In the case of a 
table of the Relational Metamodel , we obtain the concept Class of the OO 
Metamodel. 

3. The operator generate instantiates the concept of the target metamodel, which 
becomes a metaconcept for its instance, i.e., the concept Class of the OO 
metamodel becomes the metaconcept for its instance OO-Invoice. The new 
concept, which has been generated in the new target schema at the M1-layer, is 
equivalent to the original concept in step 1, through the equivalence relationship 
that we have defined before. 

4. Finally, the operator instantiates the equivalence defined at the M2-layer between 
the Metaconcept of the source Concept and the Metaconcept’ of the new generated 
Concept’. The instantiation defines a new property in the source schema at the M1-
layer that has the source Concept as domain and the target Concept’ as range. 
The morphism generate is one of the MOMENT algebra operators and has been 

implemented in F# as part of our prototype. To automatically generate models among 
different metamodels, we only have to add specific rewriting rules to the operator. 
These axioms are applied by means of the pattern matching of the F# language to 
translate the source model into the target one. Focusing on simple equivalence 
mappings, we take into account three possible cases of rewriting rules in order to 
generate OO models from relational schemas: the generation of a class, the generation 
of an attribute when the class that contains it has been generated before, and the 
generation of an attribute when the class that contains it has not yet  been generated. 

5.2.1. Table-Class equivalence 
To take into account the translation of a table, the following condition and 

generation functions appear in the code of the operator: 
 
 

where generate_r_table_2_oo_class performs the translation of the relational table 
into a class in the target OO schema. 

When the operator processes  a concept of the relational schema, it reifies the 
concept obtaining the metaconcept that describes the type of this  concept. If the 
current concept is the term Invoice (shown in Fig. 2), its metaconcept is the term 
Table in the relational metamodel (1). The operator searches for the equivalence 
mapping that relates it to a concept of the OO Metamodel, obtaining the concept 
Class (2). This concept is instantiated in the new OO schema at the M1-layer (3). The 
identifier of the new concept is obtained from the URI that identifies the original 
relational table. Currently, we add the prefix OO- to the URI: OO-Invoice. Finally, the 

| Concept(_,"Table", _) -> 
generate_r_table_2_oo_class r_schema r_concept oo_schema 



 

equivalence mapping equivalence_table_class defined at the M2-layer is instantiated 
in the property equivalence_table_class_1  at the M1-layer, relating the original 
concept Invoice of the relational schema to the new generated concept OO-Invoice of 
the new OO schema (4). 

 
 
 
 
 
 
 
 
 

Fig. 2. Description of the rewriting process applied to a table 

5.2.2. Column -Attribute equivalence 
To translate a column of a table of a relational schema into an attribute of a class in 

a target OO schema, we have to take into account two situations: when the table that 
contains the column has already been translated and when it has not. 

To deal with the first case, the following conditions and generation functions are 
specified in the code of the operator generate: 

 
 
 

where the condition validate_column_with_table checks  whether the table is 
translated and the generation function generate_r_column_2_oo_attribute translates 
the original column into an attribute in the target OO schema. 

Fig. 3 illustrates the generation process followed in this case. Assume that we are 
processing the column Code of the table Invoice in Fig. 3. To determine whether the 
table Invoice has already been translated, the axiom finds an instance of the 
table_column  property that relates the column Invoice to a table (1). Once we have the 
concept Invoice representing the relational table, the condition checks the existence of 
an instance of the property equivalence_table_class, which relates the table Invoice to 
a class in the target schema at the M1-layer (2). In this case, the generation function is 
applied, reifying the concept Code to the concept Column (3). Querying the 
equivalence mapping equivalence_column_attribute (4), the operator obtains the 
concept of the OO Metamodel that is equivalent to the concept Column, i.e., the 
concept Attribute. Then, the operator instantiates it providing an identifier, which is 
obtained from the original concept Code (5). By means of the property 
equivalence_table_class_0 defined at the M1-layer, the operator obtains the class that 
is going to contain the recently generated attribute. By doing so, the property 
class_attribute of the OO metamo del is instantiated by relating the class Invoice and 
the attribute Code (6). Finally, the property equivalence_column_attribute  is 
instantiated relating the original concept Code and the generated concept OO-Code 
(7). 

| Concept(_,"Column", _)  
 when (validate_column_with_table r_schema r_concept oo_schema) ->   
  generate_r_column_2_oo_attribute r_schema r_concept oo_schema 



  

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Description of the rewriting process applied to column 

In the second case, the axiom just checks the opposite condition of the first case, 
i.e., there is no class that is related to the concept Invoice of the relational schema by 
means of an equivalence mapping. Here, the generation function is a composition of 
the generation rule for a table and the generation rule for a column whose table has 
already been generated. 

Equivalence mappings generated at the M1-layer are used by another operator of 
the MOMENT algebra, the operator migrate, which automatically produces a 
migration plan that indicates how the information of the source model at the M0-layer 
can be migrated to the information container of the target model. Therefore, these 
mappings allow us to perform data migration among models at the M0-layer. 

6. Conclusions and future work 

Reverse engineering constitutes a process that is currently present in software 
development companies. However, model management [6] is an emerging research 
field that aims at resolving data model integration and interoperability by means of 
generic operators. We have developed a prototype that permits the representation of 
models by means of the essential concepts of RDF, following the MOF metamodeling 
culture. For the moment, we have focused on the specification of relational schemas 
and object-oriented models. Model management tasks can help to improve a reverse 
engineering process as well as help to directly deal with the data models that are held 
by the applications. In this  paper, we have focused on one of these tasks: schema (or 
model) generation. 

We have presented two fundamental mainstays, which we have built our 
MOMENT platform on, taking into account our previous experience in the industrial 
project RELS [16]. A tool for the recovery of legacy systems  has been built , using a 
term rewriting system to translate relational schemas into OO conceptual schemas and 
performing data migration from the legacy database to the database of the new 
application.  

In this paper, we have considered an example of schema generation and we have 
presented an overview of our platform for model management taking into account the 



 

algebra used to represent and manipulate models . We have gone beyond on schema 
generation explaining the algebraic operator generate that we use to automatically 
generate the basic parts of a model by means of simple mappings between elements of 
different metamodels. Both the operator and the entire algebra have been 
implemented in F# [15] to be able to deal with models without the complexities that 
have to be taken into account in an algorithmic approach, such as in RONDO [8]. 
Thus, our approach is more generic and improves the scalability of the algebraic 
operators by simply adding axioms to the presentation of the algebra, as we have 
shown above. 

Future work will take into account complex mappings that provide full support for 
generating schemas. We will also consider metamodels  that are different from the 
relational and the OO metamodels  in order to validate the generic applicability of our 
approach. 
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