
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

An Algebraic Baseline for Automatic
Transformations in MDA

Artur Boronat 1 José Á. Carśı 2 Isidro Ramos 3

Information Systems and Computation Department
Polytechnic University of Valencia

Valencia, Spain

Abstract

Software evolution can be supported at two levels: models and programs. The
model-based software development approach allows the application of a more ab-
stract process of software evolution, in accordance with the OMG’s MDA initiative.
We describe a framework for model management, called MOMENT, that supports
automatic formal model transformations in MDA. Our model transformation ap-
proach is based on the algebraic specification of models and benefits from mature
term rewriting system technology to perform model transformation using rewriting
logic. In this paper, we present how we apply this formal transformation mech-
anism between platform-independent models, such as UML models and relational
schemas. Our approach enhances the integration between formal environments and
industrial technologies such as .NET technology, and exploits the best features of
both.

Key words: Graph-based models, MDA and model
transformation, consistency and co-evolution, term rewriting
systems.

1 Introduction

The development of information systems is getting increasingly complex as
these systems become both more widely distributed and pervasive in influence
[1]. New technologies that enable these capabilities allow for a wide range of
choices which the software developer must take into account. Such choices in-
volve technologies for describing software such as object-oriented programming
languages, XML, database definition, query languages, etc. These technologies

1 Email: aboronat@dsic.upv.es
2 Email: pcarsi@dsic.upv.es
3 Email: iramos@dsic.upv.es

c©2004 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs


Boronat, Carśı and Ramos

have different levels of abstraction. For instance, there are technologies that
support requirements engineering such as DOORS or RequisitePro. There are
also technologies that support modeling approaches such as UML and others
that permit the implementation of a specific solution such as .NET Framework,
Java, etc. On the one hand, modeling approaches provide mechanisms to find
the most effective representation of real-world concepts in the domain space of
a software project. On the other hand, the majority of technical frameworks
offer a large number of mechanisms to build solutions in the computer space.

In general, the initial idea was that the models had to represent reality
from the user perspective, starting from the problem space. However, these
models actually come from the solution space (such as UML) abstracting the
features of object-oriented programming language and constraining the logic
representation of the problem space. This approach was taken in order to
be able to automatically generate software artifacts from a layer that is more
abstract than the final code. Unfortunately, the automatic generation of soft-
ware has not yet reached maturity, provoking the crisis of the CASE tools that
appeared in the mid 90s. Contrary to what we expected ten years ago, we have
arrived to a complicated situation where the design and implementation of a
software product requires an enormous effort involving several technologies.

However, all the software artifacts that we have mentioned above can act as
models with a specific level of abstraction. The generation of code that CASE
tools are supposed to perform (model compilers) can also be considered as
the transformation of a model of a high level of abstraction into one with
a more specific level of abstraction. In accordance with this approach, a
research field has emerged, providing a solution to problems of this kind:
model management. A model is an abstract representation of a domain that
enables communication among heterogeneous stakeholders so that they can
understand each other. Model management [2] aims at solving problems that
require model representation and its manipulation in an automated way.

The OMG’s Model Driven Architecture (MDA) initiative [3] is set in this
context and provides several proposals to define models, through the standard
Meta-Object Facility (MOF) [4]. It also offers proposals to perform model
transformations by means of the Query/View/Transformations (QVT) lan-
guage, which is still in its early stages [5]. While a lot of attention has been
given to the transformation of platform-independent models into platform-
specific models, the scope of MDA goes beyond this in an attempt to model
all the features of a software product throughout its life cycle. Nonetheless,
a precise technique to provide formal support for the entire process of model
transformation has not yet been developed.

The MOMENT (MOdel manageMENT) platform follows this trend by
providing a framework where models can be represented using an algebraic
approach. MOMENT is based on an algebra that is made up of sorts and
operators that permit the representation of any model as a term that can be
automatically manipulated by means of operators. The MOMENT Framework

2



Boronat, Carśı and Ramos

benefits from the best features of current visual CASE tools and the main
advantages of formal environments such as term rewriting systems, combining
the best of both industry and research.

This paper presents the generic model transformation mechanism of the
MOMENT Framework, and its application to platform-independent models,
obtaining a UML model from a relational schema in the MDA context. The
paper is structured as follows: Section 2 presents other approaches to provide
automatic support for model transformations; Section 3 indicates an example
to illustrate the transformation process through the paper; Section 4 provides
an overview of the MOMENT Framework; Section 5 presents the model trans-
formation mechanism of the MOMENT Framework, focusing on the use of a
Term Rewriting System (TRS) as a formal environment to perform automatic
model transformations. Finally, Section 6 summarizes the work and indicates
the future directions of our research tasks.

2 State of the Art

The essentials of a model theory for generic schema management are presented
in [6]. This model theory is applicable to a variety of data models such as the
relational, object-oriented, and XML models, allowing model transformations
by means of categorical morphisms. RONDO [2] is a tool based on this ap-
proach. It represents models by means of graph theory and a set of high level
operators that manipulate such models and the mappings between them by
using category theory. Models are translated into graphs by means of specific
operators for each metamodel. These algebraic morphisms are implemented
using imperative algorithms such as CUPID [7]. CUPID is an algorithm for
matching schemas in the RONDO tool.

In the MOMENT platform, we follow the framework that is proposed in
the Meta-Object Facility specification (MOF). MOF is one of the OMG family
of standards for modeling distributed software architectures and systems. It
defines an abstract language and a four-layer framework for specifying, con-
structing and managing technology neutral metamodels. A metamodel is an
abstract language for different kinds of metadata. MOF defines a framework
for implementing repositories that hold metadata described by the metamod-
els. This framework has inspired our platform for model management, al-
though we do not use the same vocabulary to describe metamodels. In the
case of MOF, the two most abstract layers offer an abstract view of a spe-
cific model. This allows for the definition of generic operators to manipulate
models and metamodels.

The MétaGen project [9] has dealt with model engineering since 1991,
aiming at a fully automatic generation of a conventional application from a
description given by its intended user. Such a description is performed by
means of PIR3, a variant of what is known in the Database community as
Entity-Relationship Model. In [10], Revault et al. compared three metamod-

3



Boronat, Carśı and Ramos

eling formalisms to share the experience they acquired during the MétaGen
project. In that paper, they presented a way to transform MOF-based meta-
models into PIR3-based metamodels so that the metamodels could benefit
from the MétaGen tools. This proposal constrains the expressivity of the
source metamodels because the Object-Oriented paradigm is richer than the
Entity-Relationship paradigm. Our model management approach supports the
definition of several metamodeling languages such as MOF or PIR3, consider-
ing them as models at the same abstraction level and using generic operators.
This makes automated transformations between models of both metamodels
possible, without loss of expressivity.

XML [18], the standard for data communication between applications is
also used to represent models and metamodels by means of the XMI specifica-
tion [19]. MOF defines a meta-metamodel, while XMI indicates the physical
representation for the metamodels and the models that can be defined with
it. In the model transformation field, there is a XML specification that allows
the transformation of a XML document into another one, called XSLT [20]. It
could be used to transform models that are represented in the XML format.
Comparing XSLT to term rewriting systems, there are some differences that
should be pointed out:

• Although XSLT is said to be a declarative language, control instructions,
such as jumps and loops, can be used to guide the transformation process.
In contrast, a term rewriting system takes over the transformation rule
evaluation process.

• Writing an XSLT program is a long and painful process which implies poor
readability and high maintenance cost for associated programs. Also, writ-
ing an XSLT program requires good skills in the MOF and XMI specifi-
cation, because when using XPATH and XSLT, the developer must take
into account the structure of models which depends on metamodels. These
metamodels are in turn widely influenced by MOF and XMI. By expressing
metamodels as algebras, we can deal with a more specific syntax that reflects
their semantics using the algebras as domain specific languages. Therefore,
writing models (and consequently transformation rules) becomes easier and
more comprehensible.

• Transformation rules in XSLT are applied without taking into account the
target XML schema (metamodel when transforming models), implying a
posterior checking to determine whether the obtained document is a valid
XML document that conforms to the target schema. Rewriting rules in
an algebra take into account the source and the target algebras so that a
posterior checking is no longer needed.

• Executing an XSLT program is not user-friendly for model transformation
because there are no error messages to advise the user about an incorrect
transformation.

The MTRANS Framework [21] provides an abstract language to define

4



Boronat, Carśı and Ramos

Fig. 1. Relational schema

transformation rules that are compiled to XSLT. Even though this language
is more compact and easier to understand than XSLT, it still keeps instructions
to manage the transformation rules evaluation. Nevertheless, transformations
using XML technology imply the use of standard specifications that are in-
dustrially supported while term rewriting systems usually remain within the
field of research.

3 A Running Example

Consider a car maintenance company that has worked a long time for a large
car dealership. The maintenance company has always worked with an old C
application where the information is stored in a simple relational database
that does not take into account integrity constraints. The car dealership has
recently acquired the car maintenance company and the president has decided
to migrate the old application to a new OO technology in order to improve
maintenance and efficiency. Therefore, the target application will be developed
by means of an OO programming language.

Suppose that a part of the original database are two tables related by means
of a foreign key, representing the information of an invoice and its lines, as
shown in Fig. 1. To obtain a UML model that is semantically equivalent to
this relational schema, a designer usually builds it manually, which involves
high development costs, since the entire initial database must be taken into
account. What is worse is that this process is error-prone due to the human
factor.

4 The MOMENT Framework

The MOMENT (MOment manageMENT) Framework is a modular architec-
ture divided into the three traditional layers: interface, functionality and per-
sistence. In each one of them, the environment benefits from mature tools,
such as graphical CASE tools at the interface layer, term rewriting systems at
the functionality layer, and RDF repositories at the persistence layer. Hence,
the MOMENT Framework aims at using the best features of each environ-
ment, bringing industrial modeling tools closer to more formal systems. Fig.
2 shows an overview of the MOMENT Framework.

The functionality layer permits the representation of models and the per-

5



Boronat, Carśı and Ramos

Fig. 2. The MOMENT Framework

formance of transformations over them. The core of the functionality layer
is a module called MOMENT Theory, which allows model representation and
manipulation by means of an algebraic approach. We use the expressiveness
of the algebra that the platform is based on to define and represent a model as
an algebraic term. This algebra represents models by means of terms of a sort
called Schema. These terms are made up of by concepts and properties. The
concepts are the main entities of a model, and the properties either describe
them with values or establish relationships between them. The properties
contain information about cardinality, indicating how many concepts can be
related to the owner of the property.

The MOMENT platform uses several metadata layers to describe any kind
of information including new metadata types. This architecture is based on
both the classical four-layer metamodeling architecture (following standards
such as ISO [11] and CDIF [12]) and on the more modern four-layer framework
proposed in the MOF specification [4]. In our work, we divide the platform
into four abstract layers:

• The M0-layer collects the examples of all the models, i.e., it holds the in-
formation that is described by a data model of the M1-layer.

• The M1-layer contains the metadata that describes data in the M0-layer
and aggregates it by means of models. This layer provides services to collect
examples of a reality in the lowest layer.

• The M2-layer contains the descriptions (meta-metadata) that define the
structure and semantics of the metadata located at the M1-layer. This

6



Boronat, Carśı and Ramos

layer groups meta-metadata as metamodels. A metamodel is an ”abstract
language” that describes different kinds of data. The M2-layer provides
services to manage models in the next lower layer.

• The M3-layer is the platform core, containing services to specify any meta-
model with the same common representation mechanism. It is the most ab-
stract layer in the platform. It contains the description of the structure and
the semantics of the meta-metadata, which is located at the M2-layer. This
layer provides the ”abstract language” to define different kinds of metadata.

The MOMENT Theory module also provides a mechanism to define trans-
formations between metamodels. The TRS Manager module wraps a TRS,
which carries out the model transformation by applying a set of rewriting rules
automatically. We have used the CafeOBJ environment as TRS [13]. The
Theory Compiler module permits the compilation of the algebraic specifica-
tion of a metamodel into a theory based on equational logic. It also compiles
the defined mappings between the elements of the metamodels into a theory
based on rewriting logic in order to perform the model transformation on the
wrapped TRS.

Some of these modules have been developed using the functional language
F# [14], which provides convenient features to work with algebraic specifica-
tions and with imperative programming environments such as .NET technol-
ogy. A combination of functional languages and algebraic specification lan-
guages has permitted us to reach our goals. On the one hand, the MOMENT
algebra is implemented in F#, which provides efficient structures for naviga-
tion and specification manipulation. On the other hand, a TRS provides a
suitable environment to support automatic model transformation.

5 PIM-to-PIM Transformation

MDA raises the level of abstraction in the software development process by
treating models as primary artifacts. Models are defined using modeling lan-
guages, but when those languages are intended to be used for anything more
sophisticated than drawing pictures, both their syntax and their semantics
must be specified. In this case, the use of formal languages usually involves
dealing with their complex syntax, making them unpopular in industry. In
this sense, the MOMENT Framework is user-friendly and permits the use
of formal techniques from well-known CASE tools to both define models by
means of algebraic specifications and to perform model transformations using
rewriting logic [15].

In this section, we present how MOMENT provides formal support for
generic model transformation in the MDA context, by generating a UML
model from a relational schema. First, we explain a general overview of the
transformation mechanism, and later, we focus on the most formal phases of
the process.

7



Boronat, Carśı and Ramos

Fig. 3. Model Transformation

5.1 Overview of the MOMENT model transformation process

Transforming any model using the MOMENT Framework constitutes a process
that is detailed in Fig. 3. To obtain the corresponding UML model from the
relational schema of the motivating example, we perform the following steps:

(i) (1) and (2):
We specify both relational and UML metamodels, respectively, at the

M2-layer of the MOMENT platform using the operations of the MO-
MENT algebra. Each one of the metamodels is a schema made up of
concepts, which describe the main entities of the ontology, and by prop-
erties, which describine the concepts by specifying values and establishing
relationships between them. These algebraic specifications are performed
through visual wizards that are embedded in a specific CASE tool to dis-
guise the equational logic formalism.

(ii) (3):
Mappings are specified between the concepts of both metamodels at the

M2-layer by means of a script language, indicating semantic relationships.
There are two kinds of equivalence mappings that can be expressed in
this language:
(a) Simple mappings, which define a simple correspondence between two

concepts that belong to different metamodels; for instance, between
a table and a class, or between a column of a table and an attribute

8



Boronat, Carśı and Ramos

of a class.
(b) Complex mappings, which define correspondences between elements

of a source metamodel and a target metamodel. These mappings
relate two structures of concepts that represent a similar semantic
meaning. For instance, to define an equivalence relationship between
a foreign key of the relational metamodel and an association of the
UML metamodel, we have to relate the foreign key, the unique con-
straint and the not null value constraint concepts to the association
concept. This is because all three of these concepts of the relational
metamodel provide the necessary knowledge to define an association
between two classes in the UML metamodel, such as the cardinalities
of the association.

(iii) (4):
The original relational schema is specified by means of concepts and

properties in a schema of the M1-layer of the MOMENT platform. Both
concepts and properties are instances of the elements of the relational
metamodel defined in step 1.

(iv) (5) and (6):
Both relational and UML metamodels, respectively, are compiled into

algebraic theories by means of the Theory Compiler module of the Frame-
work. The compilation uses the concepts to define the sorts of the new
theory and the properties to define constructors and query operators.
The generated theories are interpreted by the CafeOBJ TRS, providing
the respective algebras to define models in the TRS as algebraic terms.

(v) (7):
The semantic mapping that is specified between the concepts of both

metamodels at the M2-layer is also compiled into another theory that
extends the theories described above with a set of rewriting rules. This
theory indicates how to transform a model of the source metamodel (re-
lational metamodel) into a new model of the target metamodel (UML)
in an automatic way.

(vi) (8):
The original relational schema, which is defined in step (4) at the M1-

layer of the MOMENT platform, is compiled into a term of the relational
algebra in the CafeOBJ TRS by means of the Term Manager module of
the Framework.

(vii) (9):
The TRS evaluates the term that represents the initial relational schema

in the algebra obtained in step (7). The user can manage this process
through the Evaluator module of the Framework. The evaluation pro-
cess can be carried in a step-by-step mode or in only one step with the
full-evaluation mode, benefitting from the evaluation features of the TRS.
The TRS reduces the initial term by applying the rewriting rules obtained

9



Boronat, Carśı and Ramos

in step (7), generating a term of the target algebra.

(viii) (10):
This is the last step of the model transformation process. It parses

the obtained term in step (9), defining a model in the M1-layer as an
instance of the target metamodel defined at the M2-layer. There, it is
disguised with the visual metaphor associated to the target metamodel
in the graphical CASE tool.

In the model transformation process, the user only interacts with the MO-
MENT platform when defining the source and target metamodels (step (1)
and (2)), the semantic mappings between the elements of both metamodels
(step (3)) and the initial model (step (4)). The other steps are automatically
carried out by the Framework, although the user can participate in the eval-
uation process by specifying the rewriting rules to be applied by the TRS at
each step of the term reduction.

In the following sections, we explain phases (5), (6), (7), (8) and (9) in
more detail, indicating how the TRS is able to perform model transformations
providing formal support to the objectives of MDA.

5.2 Compilation of equational logic based theories

The relational and UML metamodels defined at the M2-layer of the MOMENT
platform are compiled into theories based on equational logic in steps (5) and
(6), respectively. The compilation of MOMENT metamodels into equational
theories uses the concepts of the metamodel to obtain the sorts of the theory;
for instance, the sorts Table, Field, ForeignKey for the relational metamodel,
as well as the identifiers for these sorts, i.e., the sorts TableId, FieldId and
ForeignKeyId. The properties of a MOMENT metamodel provide information
about the structure of the term of a sort by means of the cardinalities. Thus,
when a concept A is related to a concept B by means of a property that has
cardinality 1..1, the constructor of the sort A looks like this : op a : B → A.
Nevertheless, if the minimum cardinality is zero or the maximum cardinality
is many, then the constructor for a term of the sort A looks like this: op a
: ListB → A, where ListB is a sort that permits the definition of lists, whose
items are terms of sort B. As CafeOBJ belongs to the OBJ language family, it
permits equational specification through several equational theories, such as
associativity, commutativity, identity, idempotence and combinations between
all these. This feature is reflected at the execution level by term rewriting by
means of such equational theories.

Fig. 4 shows the constructors of the compiled theory for the relational
metamodel; and Fig. 5 shows the constructors for the UML metamodel. We
obviate the definition of sorts and other constructors in the theory, as well as
the definition of query operators, focusing on the elements of the metamodels
that permit us to illustrate the example. We must point out that the construc-
tors obtained for the UML theory permit us to define terms that represent

10



Boronat, Carśı and Ramos

Fig. 4. Part of the relational theory

Fig. 5. Part of the UML theory

UML-compliant models.

5.3 Compilation of rewriting logic-based theories

To transform the relational schema of the example, semantic mappings are
defined between the concepts of both source and target metamodels in step
(3). These mappings are compiled into an algebra that extends both relational
and UML algebras (steps (5) and (6)) with a set of rewriting rules describing
the guidelines for the model transformation. These rules are automatically
applied by the TRS rewriting the initial term into a term of the target alge-
bra. The new algebra constitutes the context where semantical relationships
between the source and target ontologies are defined. To allow the transfor-
mation process, the new algebra must relate the sorts of the initial algebra
(relational metamodel) to the sorts of the target algebra (UML metamodel).
Relationships between the sorts of both algebras result in a subsort order that
involves all the sorts. For instance, in the example, the sort Table is a subsort
of the sort Class, indicating that a class can take the place of a table that was
there before. Subsort relationships affect all the sorts of both algebras, even
identifiers and lists, because they are the related concepts in the MOMENT
algebra.

The properties that relate concepts in the MOMENT algebra define a
canonical order among the sorts of the compiled algebras. This order is taken

11



Boronat, Carśı and Ramos

into account to generate the rewriting rules. We present the rewriting rules
that are applied to the relational schema of the example to obtain a semanti-
cally equivalent UML model in CafeOBJ syntax:

(i) Field
A field of a table becomes an attribute of a class in the term that rep-

resents a UML model. The rule reuses the features of the field (datatype,
whether it is null or not and whether it is primary key) to generate an
attribute. Field features also indicate the attribute datatype, whether it
is required or not and whether it is the identifier of the class to which it
belongs:

op field : FieldId Datatype Bool Bool TableId DatabaseId ->
Attribute
eq field FI D NNV PK TI DBI = attribute FI D NNV false PK TI DBI .

(ii) Foreign Key
A foreign key can define an association between two classes in the UML

context. The following rule is applied when the foreign key is unique and
not null, obtaining an association 1..1 - 0..* between the classes generated
from the related tables.

op foreignKey : ForeignKeyId ListAttribute TableId Bool TableId
DatabaseId -> ListClass
ceq foreignKey FkI LA RTI U TI DBI =
(association FkI TI RTI DBI)(associationEnd TI TI FkI true unordered
aggregate card 0 many frozen public DBI)(associationEnd RTI RTI FkI true
unordered none card 1 card 1 frozen public DBI)
if U and isRequired (LA) .

(iii) Table
A table becomes a class. The rewriting rules must take into account

the fact that a table is made up of fields and foreign keys, so that a field
will become an attribute of the new class and a foreign key will become a
set of elements of the UML model, i.e., an association and two association
ends, according to the UML metamodel.

op table : TableId ListAttribute ListClass DatabaseId -> ListClass
eq table TI LA nilForeignKey DBI = (class TI LA DBI) .
eq table TI LA LC DBI = (class TI LA DBI) LC .

(iv) Database
Finally, a database is rewritten into a term of the sort OOSchema,

representing the target UML model, by means of the following rule:

op database : DatabaseId ListClass -> OOSchema
eq database DBI LC = ooSchema DBI LC .

12



Boronat, Carśı and Ramos

Fig. 6. Original term representing the source relational schema, and the generated
term representing the target UML model

5.4 Term rewriting process

Step (8) compiles the relational schema defined in the M1-layer of the MO-
MENT platform, obtaining the algebraic term in Fig. 6.a. The TRS applies
the rewriting rules specified above to this initial term, obtaining a term of the
target algebra (UML), shown in Fig. 6.b. This term is parsed and is defined
as a UML model in the M1-layer of the MOMENT platform. There, it is
automatically related to graphical pictures in a specific CASE tool.

During the term rewriting process, some additional information could be
required in order to perform a correct transformation, as the metamodels do
not have the same expressive power. For instance when a transformation case
has not been taken into account or when several rewriting rules can be applied
to the source model. In this cases a visual wizard helps the user to chose one
option or even to add a new transformation rule, providing a visual interface
for the CafeOBJ interpreter.

To benefit from the MOMENT features, we have integrated the function-
ality of the MOMENT Framework into a visual modeling environment [22]. In
this way, we can relate algebraic specifications to visual notations so that the
user can use these graphics to build a model. The CASE tool we have chosen
is MS Visio [23]. We have developed an add-in that permits the definition
of metamodels with concepts and properties. Fig. 7 shows the interface that
permits the definition of the graphical symbol of a class in the MOMENT
platform.

In visual CASE tools, models are usually defined by dropping graphical
primitives on a sheet where the model is defined. By means of the developed
add-in, dropping a primitive on the sheet does not only add a figure to the
model but it also defines it algebraically, specifying the model so that it can
be manipulated afterwards.

13



Boronat, Carśı and Ramos

Fig. 7. Visual interface to define a graphical primitive algebraically

6 Conclusions and further work

Nowadays, software applications have become complex combinations of tech-
nology, which have to be well understood in order to manage them. The
development of software artifacts involves models that can be mixed with
others to obtain an entire system from partial views or that can be intercon-
nected with others in order to guarantee both interoperability in a distributed
environment and their implementations.

Model management [8] is an emerging research field whose aim is to resolve
data model integration and interoperability by means of generic operators.
Similarly, MDA raises the level of abstraction in the software development
process by treating models as primary artifacts. MDA potentially covers the
modeling of all aspects of a system throughout its life cycle, making software
development processes easier and more automated.

The MOMENT (MOdel manageMENT) platform follows this trend by
providing a framework where models can be represented using an algebraic
approach. The MOMENT Framework benefits from the best features of cur-
rent visual CASE tools and from the main advantages of formal environments
such as term rewriting systems, combining both industrial and research fea-
tures.

In this paper, we have presented the generic model transformation mech-
anism provided by the MOMENT Framework, focusing on the use of the
CafeOBJ TRS to perform automatic translations of models. This mechanism
has been applied to platform-independent models in the MDA context, ob-
taining a UML model from a relational schema. The functionality of TRSs
permits us to deal with model management from a more abstract point of
view, since the application of rewriting rules can be performed in a trans-

14



Boronat, Carśı and Ramos

parent way. This fact allows us to focus all the efforts on the specification of
models without having to take the evaluation logic into account. Our approach
constitutes an algebraic baseline to cope with the future model transformation
language QVT, providing a user-friendly environment to manipulate models
from a visual CASE tool [22]. In [16], we present the fundamental mainstay on
which we have built our MOMENT platform taking into account our previous
experience in the industrial project RELS, a tool for the recovery of legacy
systems.

Currently, we are working with transformations between relational schemas
and UML models. In the near future, we will also take into account software
architecture specifications by means of PRISMA ADL [17], studying semantic
interoperability between software architectures and other types of software
artifacts represented through UML models.

7 Acknowledgments

This work was supported by the Spanish Government under the National
Program for Research, Development and Innovation, DYNAMICA Project
TIC 2003-07804-C05-01.

References

[1] S. Cook, Domain-Specific Modeling and Model Driven Architecture, MDA
Journal, (January 2004).

[2] S. Melnik, E. Rahm, P. A. Bernstein, Rondo: A Programming Platform for
Generic Model Management, (Extended Version), Technical Report, Leipzig
University, 2003. Available at http://dol.uni-leipzig.de/pub/2003-3.

[3] OMG, The Model-Driven Architecture, Guide Version 1.0.1, OMG Document:
omg/2003-06-01. Available from www.omg.org.

[4] OMG, Meta Object Facility 1.4, OMG Document: formal/02-04-03. Available
from www.omg.org.

[5] OMG, MOF 2.0 Query/Views/Transformations RFP, OMG Document
ad/2002-04-10. Available from www.omg.org.

[6] Alagic, S. and Bernstein, P.A., A Model Theory for Generic Schema
Management, in Proceedings of DBPL’01, G. Ghelli and G. Grahne (eds),
Springer-Verlag, (2001).

[7] Madhavan, J., P.A. Bernstein, and E. Rahm, Generic Schema Matching using
Cupid, MSR Tech. Report MSR-TR-2001-58, 2001,
http://www.research.microsoft.com/pubs (short version in VLDB 2001).

[8] Bernstein, P.A., Levy, A.Y., Pottinger, R.A., A Vision for Management of
Complex Models, Microsoft Research Technical Report MSR-TR-2000-53, June
2000, (short version in SIGMOD Record 29, 4 (Dec. ’00)).

15

http://dol.uni-leipzig.de/pub/2003-3
file:www.omg.org
file:www.omg.org
file:www.omg.org
http://www.research.microsoft.com/pubs


Boronat, Carśı and Ramos

[9] N. Revault, H.A. Sahraoui, G. Blain and J.F. Perrot, A Metamodeling technique:
The MÉTAGEN system, TOOLS 16: TOOLS Europe’95, Prentice Hall, pp. 127-
139. Versailles, France. Mar. 1995.

[10] N. Revault, X. Blanc and J. F. Perrot, On Meta-Modeling Formalisms and
Rule-Based Model Transforms, Comm. at workshop, In Iwme’00 workshop at
Ecoop’00, Jean Bézivin and Johannes Ernst (ed), Sophia Antipolis and Cannes,
France, June, 2000.

[11] ISO/IEC 10746-1, 2, 3, 4 — ITU-T Recommendation X.901, X.902, X.903,
X.904, Open Distributed Processing - Reference Model. OMG, 1995-96.

[12] CDIF Technical Committee, CDIF
Framework for Modeling and Extensibility, Electronic Industries Association,
EIA/IS-107, January 1994. See http://www.cdif.org/.

[13] Razvan Diaconescu, Kokichi Futatsugi, An overview of CafeOBJ. Electronic
Notes in Theoretical Computer Science vol. 15: (2000)

[14] Microsoft Research (Don Syme),The F# official web site:
http://research.microsoft.com/projects/ilx/fsharp.aspx.

[15] N. Mart́ı-Oliet and J. Meseguer, Rewriting logic: roadmap and bibliography,
Theoretical Computer Science, vol. 285, issue 2 (August 2002), pp. 121-154.
Preprint version available at http://maude.cs.uiuc.edu.

[16] A. Boronat, J. Pérez, J. Á. Carśı, I. Ramos, Two experiencies in
software dynamics. Journal of Universal Science Computer. Special issue on
Breakthroughs and Challenges in Software Engineering. April 2004.

[17] J. Pérez, I. Ramos , J. Jaén, P. Letelier, E. Navarro , PRISMA: Towards Quality,
Aspect Oriented and Dynamic Software Architectures, 3rd IEEE International
Conference on Quality Software (QSIC 2003), Dallas, Texas, USA, November 6
- 7, 2003 IEEE Computer Society Press pp. 59-66.

[18] Elliotte Rusty Harold, XML Bible, IDG Books Worldwide, 1999.

[19] OMG, XML Metadata Interchange (XMI) Specification, OMG Document
formal/02-01-01.

[20] W3C, XSL Transformations (XSLT) v1.0. W3C Recommendation,
http://www.w3.org/TR/xslt, Nov. 1999.

[21] M. Peltier, J. Bézivin, and G. Guillaume, MTRANS: A general framework,
based on XSLT, for model transformations. In WTUML01, Proceedsings of the
Workshop on Transformations in UML, Genova, Italy, Apr. 2001.

[22] Artur Boronat, José Á. Carśı, Isidro Ramos, Julián Pedrós, Soporte Formal
para Entornos Visuales de Modelado, I Workshop Metodologies for Dynamic
User Interfaces Development. Ed. Computer Science Department. Castilla-La-
Mancha University. Albacete (Spain), July, 2004. (In Spanish).

[23] Graham Wideman, Microsoft Visio 2003 Developer’s Survival Pack, Trafford,
2004.

16

http://www.cdif.org/
http://research.microsoft.com/projects/ilx/fsharp.aspx
http://maude.cs.uiuc.edu
http://www.w3.org/TR/xslt

	Introduction
	State of the Art
	A Running Example
	The MOMENT Framework
	PIM-to-PIM Transformation
	Overview of the MOMENT model transformation process
	Compilation of equational logic based theories
	Compilation of rewriting logic-based theories
	Term rewriting process

	Conclusions and further work
	Acknowledgments
	References



