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Abstract. In the Model-Driven Architecture initiative, software artefacts are 
represented by means of models that can be manipulated. Such manipulations 
can be performed by means of transformations and queries. The standard 
Query/Views/Transformations and the standard language OCL are becoming 
suitable languages for these purposes. This paper presents an algebraic 
specification of the operational semantics of part of the OCL 2.0 standard, 
focusing on queries. This algebraic specification of OCL can be used within the 
Eclipse Modeling Framework to represent models in an algebraic setting and to 
perform queries or transformations over software artefacts that can be 
represented as models: model instances, models, metamodels, etc. In addition, a 
prototype for executing such OCL queries and invariants over EMF models is 
presented. This prototype provides a compiler of the OCL standard language 
that targets an algebraic specification of OCL, which is run on the term 
rewriting system Maude. 

Keywords: MDA, OCL queries and invariants, metamodeling, algebraic 
specification. 

1   Introduction 

Model-Driven Development is a field in Software Engineering that, for several years, 
has represented software artefacts as models in order to improve productivity, quality, 
and economic incomes. Models provide a more abstract description of a software 
artefact than the final code of the application. A model can be built by defining 
concepts and relationships. The set of primitives that permit the definition of these 
elements constitutes what is called the metamodel of the model. 

Interest in this field has grown in software development companies due to several 
factors. Previous experiences with Model Integrated Computing [1] (where embedded 
systems are designed and tested by means of models before generating them 
automatically) have shown that costs decrease in the development process. The 
consolidation of UML as a design language for software engineers has contributed to 
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software Model-Driven Development by means of several CASE tools that permit the 
definition of UML models and automated code generation. The emergence of 
important model-driven initiatives such as the Model-Driven Architecture [2], which 
is supported by OMG, and the Software Factories [3], which is supported by 
Microsoft, ensures a model-driven technology stock for the near future. 

Model-Driven Development has evolved into the Model-Driven Engineering field, 
where not only design and code generation tasks are involved, but also traceability, 
model management, metamodeling issues, model interchange and persistence, etc. To 
fulfil these tasks, model transformations and model queries are relevant tasks that 
must be solved. In the MDA context, they are dealt with from an open-standard point 
of view. The standard Meta-Object Facility (MOF) [4] provides a way to define 
metamodels. The standard proposal Query/Views/Transformations (QVT) [5] will 
provide support for both transformations and queries. While model transformation 
technology is being developed [6-8], the Object Constraint Language (OCL) remains 
as the best choice for queries. 

OCL [9] is a textual language that is defined as a standard “add-on” to the UML 
standard. It is used to define constraints and queries on UML models, allowing the 
definition of more precise and more useful models. It can also be used to provide 
support for metamodeling (MOF-based and Domain Specific Metamodeling), model 
transformation, Aspect-Oriented Modeling, support for model testing and simulation, 
ontology development and validation for the Semantic Web, among others. Despite its 
many advantages, while there is wide acceptance for UML design in CASE tools, 
OCL lacks a well-suited technological support.  

In this paper, we present an algebraic specification of generic OCL queries, by 
using Maude [10], that can be used in a MOF-like industrial tool. The OCL algebraic 
specification permits the study of formal features and their proofs, and the execution 
of OCL expressions as well. This algebraic specification has been developed in the 
MOMENT framework (MOdel manageMENT) [11], which provides a set of generic 
operators to deal with models. The MOMENT operators use OCL queries to perform 
model queries and transformations. 

The structure of the paper is as follows: Section 2 provides an example; Section 3 
describes the algebraic specification of OCL, indicating the support for basic data 
types and collection types, and the support for collection operations; Section 4 
presents the integration of the algebraic specification of OCL within an industrial 
modelling framework; Section 5 provides the architecture of the prototype; Section 6 
presents some related works; Section 7 provides some conclusions and ongoing work. 

2   The Coach Company Example 

The Meta-Object Facility standard (MOF) [4] provides a metadata management 
framework and a set of metadata services to enable the development and 
interoperability of model and metadata-driven systems. The main achievement of this 
standard is the definition of a common terminology in the Model-Driven Architecture 
initiative, which can be used conceptually in other model-driven approaches.  



  

 

As an example, in this paper, we have modelled a simple coach company in UML. 
In this design, a coach has a specific number of seats and can be used for regular trips 
or for private trips. In regular trips, the tickets are bought individually. In private trips, 
the whole coach is rented for a trip. The model is shown in UML notation in Fig. 1. 
The example provides a specific UML model, and the queries are applied to its 
instances. The OCL-like specification that is presented can also be used for queries 
over any software artefact that might be defined following the MOF conceptual 
framework: metamodels, regular models, and instances of models. 

 
 
 
 
 
 
 

Fig. 1. Coach company model 

OCL queries1 permit a more precise definition of the above model by adding 
constraints. For instance, we can indicate that overbooking is not allowed in a regular 
trip by means of the following invariant: 

context Coach: 
inv: self.trips -> select( t:Trip | t.oclIsType(RegularTrip))  

-> forAll(r:Trip | r.oclAsType(RegularTrip).passengers -> size()  
<= r.coach.numberOfSeats -> sum())  

3   Algebraic specification of generic2 OCL queries 

In this section, we describe the parameterized algebraic specification of OCL that 
permits the query of either metamodels or UML models. The Maude term rewriting 
system [10] has been used for this purpose. Maude provides an algebraic specification 
language that belongs to the OBJ family3. Its equational deduction mechanism 
animates the OCL algebraic specification over a specific model instance, providing 
the operational semantics for OCL expressions. We have developed a plug-in that 
embeds the Maude environment into the Eclipse framework so that we can use it for 
our purposes. 
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3.1   Overview of the parameterized OCL algebraic specification 

In Maude, functional modules describe data types and operations on them by means 
of membership equational theories. Mathematically, such a theory can be described as 
a pair (Σ, E ∪A), where: Σ is the signature that specifies the type structure (sorts, 
subsorts, kinds, and overloaded operators); E is the collection of equations and 
memberships declared in the functional module; and A is the collection of equational 
attributes (associativity, commutativity, and so on) that are declared for the different 
operators. Computation is the form of equational deduction in which equations are 
used from left to right as simplification rules, with the rules being Church-Rosser and 
terminating.  

OCL collection types and their operations have been defined in a parameterized 
algebraic specification, called OCL-SUPPORT{X :: TRIV}. Fig. 2 shows the elements 
involved in the parameter passing mechanism diagram. TRIV is the algebraic 
specification of the formal parameter, which is called theory in Maude.  
 

 
 
 
 
 
 
 

Fig. 2.  The parameter passing diagram for the OCL-SUPPORT{X :: TRIV} parameterized 
module. 

SigMM is an algebraic specification that is automatically obtained from a specific 
metamodel automatically. The SigMM specification constitutes the actual parameter 
for the OCL-SUPPORT{X :: TRIV} module and provides a constructor for each type 
that is defined in the metamodel and an inheritance hierarchy among the types that 
appear in the metamodel. The MM view is the morphism that relates the elements of 
the TRIV formal parameter to the elements of the SigMM actual parameter.  

OCL collection types and related operations have been generically specified in the 
parameterized module OCL-SUPPORT{X :: TRIV}, where the formal parameter X has 
the trivial theory as type. The trivial theory only contains a sort Elt (referred to as 
X$Elt in the OCL specification) that represents the sort of elements that can be 
contained in an OCL collection. This sort represents the OCLAny type of the standard 
OCL specification. The OCL-SUPPORT{X::TRIV} module imports the basic data 
types and provides the constructors that are needed to define collections of elements. 
It provides collection operations as well. 

In Fig. 2, p and p’ are inclusion morphisms that indicate that the formal parameter 
specification is included in the parameterized specification, and that the actual 
parameter specification is included in the value specification, respectively. The h 
morphism is the induced passing morphism that relates the elements of the 
parameterized module to the elements of the OCL-SUPPORT{MM} value 
specification by using the MM parameter passing morphism. 
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3.2 Algebraic Specification of OCL Types 

Types in OCL are divided into basic data types, collection types, and user-defined 
types. In this section, the algebraic support for the first two kinds of types is 
presented. 

3.2.1 Basic Data Types 
In OCL, there are four basic data types that have a direct correspondence to Maude 
basic data types. In Table 1, we show the correspondences between OCL 2.0 and the 
Maude data-type system and their corresponding primitives. In the table, when the 
operations have different symbols in OCL and Maude, we indicate the Maude symbol 
in brackets. 

 
OCL 2.0 Maude Common operators 
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi) 
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs (abs), max, min  
Real Float /, round (ceiling), floor 
String String concat (+), size (length), substring(substr), = (==), <> (=/=) 

Table 1. OCL and Maude data-type correspondences 

3.2.2 Collection Types 
OCL provides four specific collection types that are defined as follows: 

− A Set is a collection that contains instances of a valid OCL type, where order is not 
relevant and duplicate elements are not allowed. 

− An OrderedSet is a set whose elements are ordered. 
− A Bag is a collection that may contain duplicate elements. Elements in a bag are 

not ordered. 
− A Sequence is a bag whose elements are ordered. 

To take into account the uniqueness and order features of an OCL collection, we 
introduce two intermediate sorts and their constructors (shown in Table 2): 
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the 
sort of the term that represents a group of elements that are not ordered by means of 
the association and the commutativity attributes. The constructor for this sort has the 
symbol “,” and is associative and commutative. Thus, working with integers, “1, 2, 3” 
is the term that represents a valid Magma{Int}. In addition, we can state that “1,2,3” 
and “3,2,1” represent the same group of elements modulo the commutative and 
associative attributes. 

Instead, the constructor of the sort OrderedMagma{X} does not have the 
commutativity property, producing terms that represent ordered concatenations of 
elements. The constructor for this sort has “::” as symbol and permits building 
ordered groups of elements by using the common syntax for lists in functional 
programming. Thus, the term “1 :: 2 :: 3” represents a valid ordered magma of 
integers, and “1 :: 2 :: 3” is different from “3 :: 2 :: 1” because the constructor “::” is 
not commutative. 

 



 

 

 
 
 
 
 
 
 
 
 

Table 2. Specification of groups of elements 

Terms of the sort Magma{X} are used to define sets (line 8), while terms of the sort 
OrderedMagma{X} are used in ordered sets (line 10). In Table 2, we show the Maude 
code that specifies the Set and OrderedSet types. In our specification, collections of 
collections are allowed by indicating that one collection can be an element of another 
collection (line 4). The sort Collection{X} can be considered as an abstract concept on 
the grounds that there is no specific constructor for it. Each collection has a constant 
constructor that defines an empty collection (lines 9, 11). The types Bag and 
Sequence have also been specified, similarly to the Set and OrderedSet types, 
respectively. In this specification, the uniqueness property of both the collection Set 
and the collection OrderedSet is checked in the operations that join two collections: 
union, intersection and including for Set, and union, append, prepend, insertAt and 
including for OrderedSet.  

A view has been defined for each Maude simple data type in order to deal with 
collections of simple data types. For instance, to deal with collections of integers, the 
following view is defined: view Int from TRIV to INT is sort Elt to Int . endv   

This view is used to instantiate the OCL-SUPPORT{X} module as OCL-
SUPPORT{Int}. This way, the following example is a valid collection of integers: 
OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}} 

3.3 Loop Operations or Iterators 

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular 
operations and loop operations or iterators. Regular operations provide common 
functionality over collections. Loop operations or iterators permit looping over the 
elements in a collection while performing a specific action. In this paper, we focus on 
the second type of operations.  

Every loop operation has an OCL expression as parameter. This is called the body, 
or body parameter, of the operation. As a guiding example, we use a standard OCL 
expression that permits obtaining the odd numbers from a set of integers: 

Set{1,2,3,4,5,6} -> select(i  | i.mod(2) <> 0) 
In this expression, select is the iterator operation and the expression (i | i.mod(2) 

<> 0) is the body. Both iterator operations and body expressions are considered in the 
algebraic specification separately. This separation is needed to simulate higher-order 
functions in Maude by considering body functions as terms that can be passed as 
arguments to iterator operations.  

1.  sort Magma{X} OrderedMagma{X}  . 
2.  subsort X$Elt < Magma{X} OrderedMagma{X} . 
3.  sorts Collection{X} Set{X} OrderedSet{X} . 
4.  subsort Collection{X} < X$Elt . 
5.  subsorts Set{X} OrderedSet{X} < Collection{X} . 
6.  op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] . 
7. op _::_ : Magma{X} Magma{X} -> Magma{X} [assoc ctor] . 
8.  op Set{_} : Magma{X} -> Set{X} [ctor] . 
9. op empty-set : -> Set{X} [ctor] . 
10.  op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] . 
11. op empty-orderedset : -> OrderedSet{X} [ctor] .



  

 

Using the example of the selection of odd numbers from an integer set, we study 
first how to specify the body of the select expression i  | i.mod(2) <> 0. Expression 
bodies can be evaluated to several types depending on the kind of operator in which 
they are used. For instance, the body expression of a select evaluates to a boolean 
value. Depending on the return type of the body expression, a symbol is associated to 
it indicating the name of the body expression. For the example, we obtain: 
 op isOdd : -> BoolBody{Int} [ctor] . 
The body expression is built by using the following operation: 

op _::_`(_;_`) : Magma{X} BoolBody{X} ParameterList Collection{X} -> Bool  . 
where the first argument is a term that represents a magma of elements, the second 
argument is the corresponding body symbol, the third argument is a variant list of 
parameters that can be empty, and the fourth argument is the whole initial collection 
to which the first argument belongs. To define a body function, the axioms must be 
provided by the user in Maude notation. For the example, we define the following 
equation: 

var intN : Int .  var intCol : Collection{Int} .  var PL : ParameterList . 
eq intN :: isOdd ( PL ; intCol ) = ((intN rem 2) =/= 0) . 
Once the body expression has been defined, we provide an algebraic specification 

of the operational semantics of the select operation for sets. The different collection 
operations have been defined as function symbols (terms of the sorts that are shown in 
Table 3), depending on the return type of each operation. For instance, the select 
operation, which returns a collection of elements, is defined as follows: 

op select : -> Fun{X} [ctor] . 
 

Collection operator symbols Iterator symbols  Return type 
Collection Set OrderedSet Bag Sequence Collection 

Fun{X} Collection union, flatten, 
including, excluding, 
iterate 

--, 
inter-
secti-
on 

--, insertAt, 
append, 
prepend 

intersection insertAt, 
append, 
prepend 

select, reject, any,  
sortedBy, collect, 
collectNested, 
iterate 

EltFun{X} Element   first, last, at  first, last, at  
BoolFun{X} Boolean 

value 
includes, includesAll, 
excludes, 
excludesAll, 
isEmtpy, notEmpty 

    one, forAll, 
forAll24, exists, 
isUnique 

IntFun{X} Integer 
value 

count, size, sum, 
product 

 indexOf  indexOf  

Table 3. OCL collection operations that have been specified 

The operational semantics of iterator operations is defined independently of body 
operations. This fact permits the reuse of the algebraic specification of iterator 
operations simulating them as higher-order functions. Three axioms constitute the 
algebraic specification of the select operator for sets (as shown in Maude notation in 
Table 4). These are the arguments of select: BB is a variable that contains the boolean 
body expression, PL is a parameter list for the body operator, and Col is the original 
set. The first axiom considers the recursion case where there is more than one element 
in the set. If the body function validates to a true value, the element is added to the 
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resulting set. Finally, the recursion over the rest of the elements continues. The 
second axiom considers the recursion case when only one element remains in the set 
so that the recursive trail ends. The third axiom considers the case where the set is 
empty. 

To invoke an iterator in an OCL-like way, the following operation is used: 
op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} -> 

Collection{X} . 
where the first argument is the collection to be looped, the second argument is an 
iterator symbol, the third argument is the body operation, the fourth argument is a list 
of arguments for the body operation, and the fifth argument is the proper collection 
that is looped. The fifth argument is useful when the collection must be navigated in 
the body operation. When the iterator is processed, if this argument is not added, the 
recursion mechanism consumes the elements of the collection, and queries over the 
whole collection would not be complete. To invoke the select iterator over a set of 
integers with the body isOdd we use: Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-
set) . 
 
 
 
 

Table 4. Axiomatic specification of the select operation for sets. 

4   Algebraic specification of metamodels and models 

The advantage of OCL is that user-defined types can be used in expressions to 
perform queries on software artefacts (namely models). User-defined types are the 
types that can be used in a model: classes, associations, enumerations, and so on. One 
of the keys to success in the use of the OCL algebraic specification is the integration 
with an industrial modelling environment. In this way, OCL expressions can be 
evaluated in a graphical model without having to prepare the information in a specific 
format manually. 

 In our case, we have chosen the Eclipse Modeling Framework (EMF) [13]. EMF 
is a modeling environment that is plugged into the Eclipse platform and provides a 
sort of implementation of the MOF. It brings code generation capabilities: for UML-
like models, it generates the final structural code of the application; for metamodels, it 
generates a default tree-like editor that permits the definition of domain-specific 
models and the validation of the corresponding metamodel. EMF enables the 
automatic importation of software artefacts from heterogeneous data sources: UML 
models (by means of visual modeling environments), relational schemas of any 
relational database management system (through the Rational Rose tool), and XML 
schemas. Moreover, third-party researchers and developers are bringing new tools to 
work on ontologies through EMF and graphical Domain Specific Languages. 
Therefore, EMF has become an industrial framework for MDA.  

eq Set{ N , M } -> select ( BB ; PL ; Col ) = if (N :: BB ( PL ; Col )) then Set{ N } -> including ( ( Set{ M } -> select ( BB ; PL ; Col )) ) -> flatten 
else Set{ M } -> select ( BB ; PL ; Col ) fi . 

eq Set{ N } -> select ( BB ; PL ; Col ) = if (N :: BB ( PL ; Col )) then Set{ N } else empty-set fi . 
eq empty-set -> select ( BB ; PL ; Col ) = empty-set . 



  

 

To perform OCL queries over EMF software artefacts, two types of projection 
mechanisms have been specified. On the one hand, we have defined a projection 
mechanism that obtains the algebraic specification5 that corresponds to a specific 
Ecore model automatically by applying generative programming techniques. On the 
other hand, another projection mechanism permits us to project an Ecore model 
instance as a term of the algebra that corresponds to the Ecore model.  

As shown in Fig. 3, an Ecore model may represent either a metamodel at the M2-
layer (for instance, the UML metamodel) or a model at the M1-layer (for instance, a 
UML model). Similarly, an Ecore model instance may represent either a model that 
conforms to a metamodel at the M1-layer (for instance, a UML model) or a model 
instance at the M0-layer (for instance, the instances of a UML model). From now on, 
the OCL support is explained by using the example of the UML model, although it 
would be exactly the same as defining OCL queries over Ecore metamodels. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. EMF and Maude conceptual integration 

4.1. A model as an algebraic specification 

To query a model, it must be represented as an algebraic specification in Maude. This 
specification is split in two parts: the generic OCL specification that is defined in the 
parameterized module OCL-SUPPORT{X::TRIV} and the user-defined types in the 
model.   

4.1.1 The algebraic signature of a model (SigMM) 

An Ecore model is mainly constituted by EClass instances (informally called classes) 
that are related to each other by means of inheritance relationships and EReference 
instances (informally called references in Ecore and associations in UML). They are 
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Ecore model) permits the representation of models as algebraic terms. Thus, models can be 
manipulated by our model management operators. Algebraic specifications of this kind do 
not specify operational semantics for the concepts of the metamodel; they only permit the 
representation of information for model management issues. 
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used to generate an algebraic specification that is used as an actual parameter for the 
OCL-SUPPORT{X::TRIV} module. Informally, the following tasks are involved in 
the generation of Maude code from a model: 
− Signature generation: An Ecore class is constituted by attributes and references. 

This information is used to generate a sort that represents the collection of 
instances of this class and a constructor, whose arguments are: an internal 
identifier, a group of arguments that represent the attributes (basic data types) and a 
group of identifier collections (representing references). For instance, the 
RegularTrip class in Fig. 1 is used to generate the following Maude code: 
sorts RegularTrip . 
op `(RegularTrip_____`) : Qid Int Int OrderedSet {QID} OrderedSet {QID}  -> RegularTrip [ctor] . 
where the first argument is the internal identifier of the instance, the second 
argument is the inherited tripnr attribute, the third argument is the availableSeats 
argument, the fourth argument is the inherited coach reference (UML role), and the 
fifth argument is the passengers reference (UML role). This template is only 
applied to specific classes. When a class is defined as abstract, the code only 
contains the declaration of the code and no constructor is generated, indicating that 
this class cannot be instantiated. 

− Kind structure generation: class inheritance is represented by means of subsort 
relationships in Maude. In the example, the RegularTrip class is a specialization of 
the Trip class. In the Maude specification, the sort RegularTrip is defined as a 
subsort of the Trip sort. 

− Kind unification: all the sorts that are generated in an algebraic specification are 
encapsulated within the same kind, by adding a root supersort, called tripNode 
(where trip is the name of the package that contains the model definition). This sort 
permits the definition of the view between the model algebraic specification and 
the formal parameter of the OCL-SUPPORT{X::TRIV} module. All the sorts that 
have no supersort must be related to root supersort by means of a subsort 
relationship. This allows all the terms that represent instances of model classes to 
belong to this sort, thereby becoming elements of a collection. 

− Signature generation: the generated elements applying the previous templates are 
encapsulated within a module. The automatically generated module for the 
example model is called sigtrip. 

− View generation: to use the signature that is generated for a model as actual 
parameter for the module OCL-SUPPORT{X::TRIV}, a view is defined containing 
the mapping between the Elt sort of the TRIV theory and the generated root sort for 
the model. The generated view for the model in the example is as follows: 
view vtrip from TRIV to sigtrip is sort Elt to tripNode . endv 

4.1.2 The algebraic specification of a model  

The instance of a model is represented as a set of instances of the classes that 
constitute the model MM. To define model instances as sets, the signature that is 
obtained from the definition of the model is used as actual parameter for the 
parameterized module that contains the generic algebraic specification of OCL by 
means of the generated view.  



  

 

The instantiated module OCL-SUPPORT{MM} is contained in another module, 
called sptrip in the example. This module also contains the operations that are needed 
to navigate the model by means of either the attributes or the roles of a class.  

The operation to navigate a reference (UML role) has the following skeleton: 
op _::_`(_`) : X$Elt Fun{X} Collection{X} -> Collection{X} [ctor] . 
where X$Elt represents an element of the model instance (a class instance), Fun{X} 
represents the symbol of the role, the Collection{X} argument represents the model 
instance (which is needed to navigate the model), and the Collection{X} return 
parameter represents the collection of class instances that is obtained by means of the 
navigation operation. For example, to navigate through the reference coach of a 
RegularTrip class instance, called rt, of the a model instance, called ModelInstance, 
we use the following expression: 
rt :: coach (ModelInstance) 

The operation to obtain the value of an attribute has the following skeletons, 
depending on the attribute type: 
op _::_ : X$Elt YFun{X}  -> Y [ctor] . (where Y = {Int, Float, Bool, String, Qid} ) 

For example, to obtain the value of the availableSeats of a TripRegular class 
instance, called rt, we use the following expression: 
rt :: availableSeats 

Finally, the module sptrip contains all the operations that are needed to define an 
instance of a model (constructors to define collections, to define basic data type 
values and user-defined types) and to apply OCL queries to instances of any model 
(collection operations, iterators, and user-defined navigation operations). Therefore, 
the membership equational theory that permits the query of the instances of a specific 
model is defined by the tuple (SOCL, OPOCL ∪ OPQUERY, EOCL), where: 

SOCL = SSimpleDataType ∪ SCollections ∪ SCollectionOperations ∪ SIterators ∪ SUserDefinedClasses 

OPOCL = OPSimpleDataTypes ∪ OPCollections ∪ OPUserDefinedTypes 
OPQUERY = OPCollectionOperations ∪ OPIterators ∪ OPUserDefinedNavigationOperations 

EOCL = ECollectionOperators ∪ EIterators ∪ EUserDefinedNavigationOperations 

4.2. An instance of a model as an algebraic term 

OCL queries are performed over instances of models. The definition of a model can 
be graphically performed by means of EMF. Then, it can be automatically serialized 
to a term that represents a set of instances of the classes that constitute the model. The 
serialization uses the algebraic specification that is generated for a model as 
mentioned above. 

For example, the instance of the model Trip (shown in Fig. 4) is serialized as a set, 
where all the elements are instances of the classes of the model, as follows: 

Set { (Coach ‘coach1 1 10 OrderedSet { ‘person1 } ), 
(RegularTrip ‘trip1 1 9 OrderedSet {‘coach1 } OrderedSet { ‘person1} ), 
(Person ‘person1 "Peter" OrderedSet { ‘trip1 } )  }  

The internal structure of a term is transparent to the user of the algebraic 
specification due to the navigation operations, which permit the user to navigate in an 
OCL-like way throughout the roles and attributes of the objects of the model instance. 

 
 



 

 

 

Fig. 4. Object diagram defined as an instance of the model defined in Fig. 1 

Therefore, the query that is used in the invariant in Section 2 can be written by 
defining the body expression of the forAll iterator as a body operation. This body 
operation checks that all the regular trips have a lower number of passengers than the 
number established by the numberOfSeats attribute of the corresponding Coach 
instance. The Maude code that is automatically obtained for the body expression of 
the forAll operator in the example is as follows: 
var self : trip-Trip . var tripModel : Set{trip} .  
op notOverbooked : -> BoolBody{trip} [ctor]. 
ceq self :: notOverbooked ( PL ; tripModel ) = 
 ((((self :: oclAsType ( ? "RegularTrip" ; tripModel )) :: passengers ( tripModel))  
 -> size) <= ((self :: coach ( tripModel ) :: numberOfSeats) -> sum))  
if self :: trip-Trip . 
eq self :: notOverbooked ( PL ; tripModel ) = false [owise]. 
where self is a variable of type Trip and tripModel is a set that represents the model 
instance to be queried. The query that is used in the body of the invariant can be 
coded as follows: 
red self :: trips ( tripModel ) -> select ( oclIsTypeOf ; “RegularTrip” ; tripModel ) -> forAll 
(notOverbooked ; empty-params ; tripModel) .  
where self is a variable of type Coach, tripModel is a variable that contains the model 
instance to be checked, and the select and the forAll operation provide the body 
expression of the invariant in Maude code by using the oclIsTypeOf operator and the 
above body expression notOverbooked. 

5   MOMENT-OCL: a prototype for executing algebraic OCL 
expressions within the Eclipse Modeling Framework 

The OCL algebraic specification that has been presented in the paper permits both 
the representation of models as sets and the use of queries and invariants over them. 
This permits the use of OCL expressions in algebraic model transformations, such as 
those presented in [6]. In addition, we have developed a simple OCL editor that 
permits the evaluation of OCL queries and invariants over EMF models or model 
instances. In this section, we provide a brief description of the architecture of this 
prototype, which is called MOMENT-OCL. 

Fig. 6 shows the components of the MOMENT-OCL prototype that permit the 
execution of algebraic OCL expressions over EMF models: 
− The OCL Projector component is the module that projects the OCL expression to 

Maude code. It makes use of the Kent OCL library [14] to validate the syntax and 
the semantics of the expression. 

The process of compilation from OCL to Maude follows the typical structure of 
a language processor. The process is divided in two phases: an initial analysis 
phase and a second synthesis phase.  

 
 

tipnr : int = 1
availableSeats : int = 9

trip1 : RegularTrip

name : string = Peter
person1 : Person

id : int = 1
numberOfSeats : int = 10

coach1 : Coach



  

 

 
 
 
 
 

Fig. 5. MOMENT-OCL Architecture 

In the first phase, we have reused the OCL support of the Kent Modelling 
Framework (KMF) [15], which provides lexical, syntactical and semantical 
analysis of OCL expressions over an EMF model. KMF analyzes an OCL 
expression, taking into account the semantics of the model, and produces an 
Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis 
phase. 

In the second phase, once an OCL expression has been analyzed by KMF 
correctly, the AST is parsed and Maude code for body expressions, queries and 
invariants are produced in order to evaluate OCL expressions over EMF models in 
Maude.  

− The Module Loader component obtains the algebraic specification from a 
metamodel, by instantiating the OCL-SUPPORT{X::TRIV} module with the 
signature obtained for a specific metamodel. This algebraic specification is 
extended with the Maude code obtained from the compilation of OCL expressions 
by means of the OCL Projector component. The Module Loader uses three other 
components: the M2 Projector, which projects a metamodel MM (the Coach model 
in the example) as the signature SigMM; the M1 Bridge, which projects a model 
(model instance in the example) as a term of the corresponding algebraic 
specification OCL-SUPPORT{MM}; and the Kernel Loader, which instantiates 
the parameterized algebraic specification of OCL with the signature SigMM, 
providing the formal environment where OCL expressions for the model MM can 
be evaluated. 

− The OCL Editor permits the definition of OCL queries and invariants over EMF 
models and provides syntactical and semantical analyses of the expressions by 
reusing this functionality from the KMF. It permits the evaluation of queries and 
invariants. Finally, there is an option to show the generated Maude code which 
specifies the operational semantics for the OCL expressions for debugging 
purposes. 

The editor (shown in Fig. 7) consists of a tree viewer, a properties view, and a 
console to show results. The tree viewer is the main window of the application. 
The information is shown in a hierarchical structure. The first step is to consider a 
model and its instance specifying the paths of the respective XMI files, where they 
are defined. The second step consists in specifying different OCL contexts for the 
model selected in the first step. Finally, we can define groups of queries or 
invariants for each context. It is possible to evaluate all the invariants defined in a 
model or only those defined in a specific context. The queries and invariants have 
two attributes, a name to identify them, which is useful to visualize the result of a 
group of invariants, and the expression, which can be written in an OCL editor. 



 

 

If we consider an invariant or query, we can analyze the expression syntactically 
and semantically, evaluate it by showing the result, or parse it to Maude code, as 
indicated in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. MOMENT-OCL screenshot 

6   Related works 

Although OCL is not as well supported as UML in some CASE tools, there is a 
growing interest in providing support for OCL in order to achieve different goals. In 
[16], several tools that support OCL are studied. Taking them and others into account, 
some technological examples, which are classified by their main goal, are provided: 
− Model transformation: MOMENT, ATL, YATL. 
− Model verification: the KeY System. 
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit, the 

Kent OCL tool. 
− Code generation (also for requirements validation): Octopus, OCLE. 
− OCL Testing: HOL/OCL. 

Nevertheless, only a few of them rely on formal methods to provide support for the 
operational semantics of OCL, and even fewer tools are integrated in (commercial) 
CASE tools. We focus on some tools that rely on formal methods in this section. 

The KeY system [17] provides functionality for formal specification and deductive 
verification within a commercial CASE tool (Together Control Center). In this 
approach, the user defines a software artefact in UML that can be annotated with OCL 
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic 
logic for Java) that can be reduced by means of an interactive theorem prover.  

The USE tool [18] provides interactive validation of OCL constraints over a 
model. This tool reads the input model and the OCL constraints from textual 
resources, supporting class diagrams, object diagrams and sequence diagrams. 
Afterwards, objects and links can be graphically created to define a snapshot of a 



  

 

running system. This tool has been extended for the automatic generation of test cases 
and validation cases. 

The ITP/OCL tool [19] provides automatic validation of UML static class 
diagrams with respect to OCL constraints. It provides an algebraic OCL specification 
using Maude, where UML class diagrams and object diagrams are formalized by 
means of algebraic specifications in membership equational logic and where OCL 
constraints are defined as formulas in membership equational logic theories. A 
graphical front-end is being developed for the ITP/OCL tool, which permits the 
definition of class diagrams and the definition of correct object diagrams. 

In these last approaches, only UML diagrams are considered for validating OCL 
expressions. In the MOMENT-OCL specification, OCL queries can be automatically 
applied either to metamodels or to models that may be defined in EMF by making use 
of the Maude parameterization mechanism, following a more automated model-driven 
oriented approach. In our approach, while Maude is used to execute OCL expressions, 
the OCL expressions can be applied to graphical model-based software artefacts 
through the EMF. Whenever EMF, and related support, is used to develop a (domain 
specific or UML) modelling environment, we can use MOMENT-OCL to provide 
invariant checking and query evaluation. Thus, our philosophy does not consist in 
developing a new modelling environment to provide OCL support, we provide it for 
other existing modelling approaches. Other java-based approaches that integrate OCL 
within the EMF are [14, 20, 21], from which we took the Kent library to reuse the 
analysis phase for the ocl compilation. 

Several instances of a model can be easily queried with our tool. Nevertheless, as 
the main goal of the algebraic specification of OCL in MOMENT-OCL was its use as 
query and data manipulation language for model transformation, the part of OCL that 
considers method validation has not been addressed yet. 

7   Conclusions and Further Work 

OCL is becoming a de-facto standard for defining constraints and queries in the 
Model-Driven Engineering field. The number of tools that provide support for this 
language is growing, and although the operational semantics of OCL is said to be 
formal, only a few tools rely on formal methods to define its operational semantics. 

In this paper, we present an algebraic specification of part of the operational 
semantics of OCL 2.0 from an implementation point of view. This specification takes 
advantage of the parameterization mechanism for the sake of reuse. 

This specification is used to perform model queries in the EMF and to represent 
EMF software artefacts as algebraic specifications or as terms that can be manipulated 
by means of model management operators [11]. The OCL specification has been 
developed generically so that it can be used for any kind of metamodel, model or 
model instance. These operators use OCL queries to specify model transformations 
that can be run in Maude as detailed in [6]. Thus, not only can OCL be studied in an 
algebraic setting, it can also be used in the well-known modelling environment EMF.  

Further work consists in exploiting the formal features of the OCL specification 
from a more-theoretical point of view and its application to real case studies. By now, 



 

 

MOMENT-OCL permits the analysis, compilation and evaluation of ocl expressions 
over EMF models in Maude, but the output that is returned by Maude is not still 
processed. Further work consists in providing such processing, allowing the user to 
check the invariants that have failed in an evaluation. 
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