
An Algebraic Specification of Generic OCL Queries
within the Eclipse Modeling Framework ♦

Artur Boronat, Joaquín Oriente, Abel Gómez, Isidro Ramos, José Á. Carsí

Department of Information Systems and Computation
Technical University of Valencia

C/Camí de Vera s/n
46022 Valencia-Spain

{aboronat | joriente | agomez | iramos | pcarsi}@dsic.upv.es

Abstract. In the Model-Driven Architecture initiative, software artefacts are
represented by means of models that can be manipulated. Such manipulations
can be performed by means of transformations and queries. The standard
Query/Views/Transformations and the standard language OCL are becoming
suitable languages for these purposes. This paper presents an algebraic
specification of the operational semantics of part of the OCL 2.0 standard,
focusing on queries. This algebraic specification of OCL can be used within the
Eclipse Modeling Framework to represent models in an algebraic setting and to
perform queries or transformations over software artefacts that can be
represented as models: model instances, models, metamodels, etc. In addition, a
prototype for executing such OCL queries and invariants over EMF models is
presented. This prototype provides a compiler of the OCL standard language
that targets an algebraic specification of OCL, which is run on the term
rewriting system Maude.

Keywords: MDA, OCL queries and invariants, metamodeling, algebraic
specification.

1 Introduction

Model-Driven Development is a field in Software Engineering that, for several years,
has represented software artefacts as models in order to improve productivity, quality,
and economic incomes. Models provide a more abstract description of a software
artefact than the final code of the application. A model can be built by defining
concepts and relationships. The set of primitives that permit the definition of these
elements constitutes what is called the metamodel of the model.

Interest in this field has grown in software development companies due to several
factors. Previous experiences with Model Integrated Computing [1] (where embedded
systems are designed and tested by means of models before generating them
automatically) have shown that costs decrease in the development process. The
consolidation of UML as a design language for software engineers has contributed to

♦ This work was supported by the Spanish Government under the National Program for

Research, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

software Model-Driven Development by means of several CASE tools that permit the
definition of UML models and automated code generation. The emergence of
important model-driven initiatives such as the Model-Driven Architecture [2], which
is supported by OMG, and the Software Factories [3], which is supported by
Microsoft, ensures a model-driven technology stock for the near future.

Model-Driven Development has evolved into the Model-Driven Engineering field,
where not only design and code generation tasks are involved, but also traceability,
model management, metamodeling issues, model interchange and persistence, etc. To
fulfil these tasks, model transformations and model queries are relevant tasks that
must be solved. In the MDA context, they are dealt with from an open-standard point
of view. The standard Meta-Object Facility (MOF) [4] provides a way to define
metamodels. The standard proposal Query/Views/Transformations (QVT) [5] will
provide support for both transformations and queries. While model transformation
technology is being developed [6-8], the Object Constraint Language (OCL) remains
as the best choice for queries.

OCL [9] is a textual language that is defined as a standard “add-on” to the UML
standard. It is used to define constraints and queries on UML models, allowing the
definition of more precise and more useful models. It can also be used to provide
support for metamodeling (MOF-based and Domain Specific Metamodeling), model
transformation, Aspect-Oriented Modeling, support for model testing and simulation,
ontology development and validation for the Semantic Web, among others. Despite its
many advantages, while there is wide acceptance for UML design in CASE tools,
OCL lacks a well-suited technological support.

In this paper, we present an algebraic specification of generic OCL queries, by
using Maude [10], that can be used in a MOF-like industrial tool. The OCL algebraic
specification permits the study of formal features and their proofs, and the execution
of OCL expressions as well. This algebraic specification has been developed in the
MOMENT framework (MOdel manageMENT) [11], which provides a set of generic
operators to deal with models. The MOMENT operators use OCL queries to perform
model queries and transformations.

The structure of the paper is as follows: Section 2 provides an example; Section 3
describes the algebraic specification of OCL, indicating the support for basic data
types and collection types, and the support for collection operations; Section 4
presents the integration of the algebraic specification of OCL within an industrial
modelling framework; Section 5 provides the architecture of the prototype; Section 6
presents some related works; Section 7 provides some conclusions and ongoing work.

2 The Coach Company Example

The Meta-Object Facility standard (MOF) [4] provides a metadata management
framework and a set of metadata services to enable the development and
interoperability of model and metadata-driven systems. The main achievement of this
standard is the definition of a common terminology in the Model-Driven Architecture
initiative, which can be used conceptually in other model-driven approaches.

As an example, in this paper, we have modelled a simple coach company in UML.
In this design, a coach has a specific number of seats and can be used for regular trips
or for private trips. In regular trips, the tickets are bought individually. In private trips,
the whole coach is rented for a trip. The model is shown in UML notation in Fig. 1.
The example provides a specific UML model, and the queries are applied to its
instances. The OCL-like specification that is presented can also be used for queries
over any software artefact that might be defined following the MOF conceptual
framework: metamodels, regular models, and instances of models.

Fig. 1. Coach company model

OCL queries1 permit a more precise definition of the above model by adding
constraints. For instance, we can indicate that overbooking is not allowed in a regular
trip by means of the following invariant:

context Coach:
inv: self.trips -> select(t:Trip | t.oclIsType(RegularTrip))

-> forAll(r:Trip | r.oclAsType(RegularTrip).passengers -> size()
<= r.coach.numberOfSeats -> sum())

3 Algebraic specification of generic2 OCL queries

In this section, we describe the parameterized algebraic specification of OCL that
permits the query of either metamodels or UML models. The Maude term rewriting
system [10] has been used for this purpose. Maude provides an algebraic specification
language that belongs to the OBJ family3. Its equational deduction mechanism
animates the OCL algebraic specification over a specific model instance, providing
the operational semantics for OCL expressions. We have developed a plug-in that
embeds the Maude environment into the Eclipse framework so that we can use it for
our purposes.

1 We consider that an invariant is built on an OCL query that returns a Boolean value. Thus,

although we talk about invariants, we are also using OCL queries.
2 In this work, OCL genericity refers to the possibility of reusing the OCL specification for any

software artefact that can be represented as a model, including metamodels.
3 In this paper, we assume some basic knowledge about algebraic specifications and OBJ-like

notation. We refer to [12] for more details.

3.1 Overview of the parameterized OCL algebraic specification

In Maude, functional modules describe data types and operations on them by means
of membership equational theories. Mathematically, such a theory can be described as
a pair (Σ, E ∪A), where: Σ is the signature that specifies the type structure (sorts,
subsorts, kinds, and overloaded operators); E is the collection of equations and
memberships declared in the functional module; and A is the collection of equational
attributes (associativity, commutativity, and so on) that are declared for the different
operators. Computation is the form of equational deduction in which equations are
used from left to right as simplification rules, with the rules being Church-Rosser and
terminating.

OCL collection types and their operations have been defined in a parameterized
algebraic specification, called OCL-SUPPORT{X :: TRIV}. Fig. 2 shows the elements
involved in the parameter passing mechanism diagram. TRIV is the algebraic
specification of the formal parameter, which is called theory in Maude.

Fig. 2. The parameter passing diagram for the OCL-SUPPORT{X :: TRIV} parameterized
module.

SigMM is an algebraic specification that is automatically obtained from a specific
metamodel automatically. The SigMM specification constitutes the actual parameter
for the OCL-SUPPORT{X :: TRIV} module and provides a constructor for each type
that is defined in the metamodel and an inheritance hierarchy among the types that
appear in the metamodel. The MM view is the morphism that relates the elements of
the TRIV formal parameter to the elements of the SigMM actual parameter.

OCL collection types and related operations have been generically specified in the
parameterized module OCL-SUPPORT{X :: TRIV}, where the formal parameter X has
the trivial theory as type. The trivial theory only contains a sort Elt (referred to as
X$Elt in the OCL specification) that represents the sort of elements that can be
contained in an OCL collection. This sort represents the OCLAny type of the standard
OCL specification. The OCL-SUPPORT{X::TRIV} module imports the basic data
types and provides the constructors that are needed to define collections of elements.
It provides collection operations as well.

In Fig. 2, p and p’ are inclusion morphisms that indicate that the formal parameter
specification is included in the parameterized specification, and that the actual
parameter specification is included in the value specification, respectively. The h
morphism is the induced passing morphism that relates the elements of the
parameterized module to the elements of the OCL-SUPPORT{MM} value
specification by using the MM parameter passing morphism.

p

MM

p’

h

TRIV OCL-SUPPORT{X::TRIV}

SigMM OCL-SUPPORT{MM}

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

3.2 Algebraic Specification of OCL Types

Types in OCL are divided into basic data types, collection types, and user-defined
types. In this section, the algebraic support for the first two kinds of types is
presented.

3.2.1 Basic Data Types
In OCL, there are four basic data types that have a direct correspondence to Maude
basic data types. In Table 1, we show the correspondences between OCL 2.0 and the
Maude data-type system and their corresponding primitives. In the table, when the
operations have different symbols in OCL and Maude, we indicate the Maude symbol
in brackets.

OCL 2.0 Maude Common operators
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi)
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs (abs), max, min
Real Float /, round (ceiling), floor
String String concat (+), size (length), substring(substr), = (==), <> (=/=)

Table 1. OCL and Maude data-type correspondences

3.2.2 Collection Types
OCL provides four specific collection types that are defined as follows:

− A Set is a collection that contains instances of a valid OCL type, where order is not
relevant and duplicate elements are not allowed.

− An OrderedSet is a set whose elements are ordered.
− A Bag is a collection that may contain duplicate elements. Elements in a bag are

not ordered.
− A Sequence is a bag whose elements are ordered.

To take into account the uniqueness and order features of an OCL collection, we
introduce two intermediate sorts and their constructors (shown in Table 2):
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the
sort of the term that represents a group of elements that are not ordered by means of
the association and the commutativity attributes. The constructor for this sort has the
symbol “,” and is associative and commutative. Thus, working with integers, “1, 2, 3”
is the term that represents a valid Magma{Int}. In addition, we can state that “1,2,3”
and “3,2,1” represent the same group of elements modulo the commutative and
associative attributes.

Instead, the constructor of the sort OrderedMagma{X} does not have the
commutativity property, producing terms that represent ordered concatenations of
elements. The constructor for this sort has “::” as symbol and permits building
ordered groups of elements by using the common syntax for lists in functional
programming. Thus, the term “1 :: 2 :: 3” represents a valid ordered magma of
integers, and “1 :: 2 :: 3” is different from “3 :: 2 :: 1” because the constructor “::” is
not commutative.

Table 2. Specification of groups of elements

Terms of the sort Magma{X} are used to define sets (line 8), while terms of the sort
OrderedMagma{X} are used in ordered sets (line 10). In Table 2, we show the Maude
code that specifies the Set and OrderedSet types. In our specification, collections of
collections are allowed by indicating that one collection can be an element of another
collection (line 4). The sort Collection{X} can be considered as an abstract concept on
the grounds that there is no specific constructor for it. Each collection has a constant
constructor that defines an empty collection (lines 9, 11). The types Bag and
Sequence have also been specified, similarly to the Set and OrderedSet types,
respectively. In this specification, the uniqueness property of both the collection Set
and the collection OrderedSet is checked in the operations that join two collections:
union, intersection and including for Set, and union, append, prepend, insertAt and
including for OrderedSet.

A view has been defined for each Maude simple data type in order to deal with
collections of simple data types. For instance, to deal with collections of integers, the
following view is defined: view Int from TRIV to INT is sort Elt to Int . endv

This view is used to instantiate the OCL-SUPPORT{X} module as OCL-
SUPPORT{Int}. This way, the following example is a valid collection of integers:
OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}}

3.3 Loop Operations or Iterators

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular
operations and loop operations or iterators. Regular operations provide common
functionality over collections. Loop operations or iterators permit looping over the
elements in a collection while performing a specific action. In this paper, we focus on
the second type of operations.

Every loop operation has an OCL expression as parameter. This is called the body,
or body parameter, of the operation. As a guiding example, we use a standard OCL
expression that permits obtaining the odd numbers from a set of integers:

Set{1,2,3,4,5,6} -> select(i | i.mod(2) <> 0)
In this expression, select is the iterator operation and the expression (i | i.mod(2)

<> 0) is the body. Both iterator operations and body expressions are considered in the
algebraic specification separately. This separation is needed to simulate higher-order
functions in Maude by considering body functions as terms that can be passed as
arguments to iterator operations.

1. sort Magma{X} OrderedMagma{X} .
2. subsort X$Elt < Magma{X} OrderedMagma{X} .
3. sorts Collection{X} Set{X} OrderedSet{X} .
4. subsort Collection{X} < X$Elt .
5. subsorts Set{X} OrderedSet{X} < Collection{X} .
6. op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] .
7. op _::_ : Magma{X} Magma{X} -> Magma{X} [assoc ctor] .
8. op Set{_} : Magma{X} -> Set{X} [ctor] .
9. op empty-set : -> Set{X} [ctor] .
10. op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] .
11. op empty-orderedset : -> OrderedSet{X} [ctor] .

Using the example of the selection of odd numbers from an integer set, we study
first how to specify the body of the select expression i | i.mod(2) <> 0. Expression
bodies can be evaluated to several types depending on the kind of operator in which
they are used. For instance, the body expression of a select evaluates to a boolean
value. Depending on the return type of the body expression, a symbol is associated to
it indicating the name of the body expression. For the example, we obtain:
 op isOdd : -> BoolBody{Int} [ctor] .
The body expression is built by using the following operation:

op _::_`(_;_`) : Magma{X} BoolBody{X} ParameterList Collection{X} -> Bool .
where the first argument is a term that represents a magma of elements, the second
argument is the corresponding body symbol, the third argument is a variant list of
parameters that can be empty, and the fourth argument is the whole initial collection
to which the first argument belongs. To define a body function, the axioms must be
provided by the user in Maude notation. For the example, we define the following
equation:

var intN : Int . var intCol : Collection{Int} . var PL : ParameterList .
eq intN :: isOdd (PL ; intCol) = ((intN rem 2) =/= 0) .
Once the body expression has been defined, we provide an algebraic specification

of the operational semantics of the select operation for sets. The different collection
operations have been defined as function symbols (terms of the sorts that are shown in
Table 3), depending on the return type of each operation. For instance, the select
operation, which returns a collection of elements, is defined as follows:

op select : -> Fun{X} [ctor] .

Collection operator symbols Iterator symbols Return type
Collection Set OrderedSet Bag Sequence Collection

Fun{X} Collection union, flatten,
including, excluding,
iterate

--,
inter-
secti-
on

--, insertAt,
append,
prepend

intersection insertAt,
append,
prepend

select, reject, any,
sortedBy, collect,
collectNested,
iterate

EltFun{X} Element first, last, at first, last, at
BoolFun{X} Boolean

value
includes, includesAll,
excludes,
excludesAll,
isEmtpy, notEmpty

 one, forAll,
forAll24, exists,
isUnique

IntFun{X} Integer
value

count, size, sum,
product

 indexOf indexOf

Table 3. OCL collection operations that have been specified

The operational semantics of iterator operations is defined independently of body
operations. This fact permits the reuse of the algebraic specification of iterator
operations simulating them as higher-order functions. Three axioms constitute the
algebraic specification of the select operator for sets (as shown in Maude notation in
Table 4). These are the arguments of select: BB is a variable that contains the boolean
body expression, PL is a parameter list for the body operator, and Col is the original
set. The first axiom considers the recursion case where there is more than one element
in the set. If the body function validates to a true value, the element is added to the

4 The forAll2 operation has been included to provide support when two iterators are being used

in the forAll operation.

resulting set. Finally, the recursion over the rest of the elements continues. The
second axiom considers the recursion case when only one element remains in the set
so that the recursive trail ends. The third axiom considers the case where the set is
empty.

To invoke an iterator in an OCL-like way, the following operation is used:
op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} ->

Collection{X} .
where the first argument is the collection to be looped, the second argument is an
iterator symbol, the third argument is the body operation, the fourth argument is a list
of arguments for the body operation, and the fifth argument is the proper collection
that is looped. The fifth argument is useful when the collection must be navigated in
the body operation. When the iterator is processed, if this argument is not added, the
recursion mechanism consumes the elements of the collection, and queries over the
whole collection would not be complete. To invoke the select iterator over a set of
integers with the body isOdd we use: Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-
set) .

Table 4. Axiomatic specification of the select operation for sets.

4 Algebraic specification of metamodels and models

The advantage of OCL is that user-defined types can be used in expressions to
perform queries on software artefacts (namely models). User-defined types are the
types that can be used in a model: classes, associations, enumerations, and so on. One
of the keys to success in the use of the OCL algebraic specification is the integration
with an industrial modelling environment. In this way, OCL expressions can be
evaluated in a graphical model without having to prepare the information in a specific
format manually.

 In our case, we have chosen the Eclipse Modeling Framework (EMF) [13]. EMF
is a modeling environment that is plugged into the Eclipse platform and provides a
sort of implementation of the MOF. It brings code generation capabilities: for UML-
like models, it generates the final structural code of the application; for metamodels, it
generates a default tree-like editor that permits the definition of domain-specific
models and the validation of the corresponding metamodel. EMF enables the
automatic importation of software artefacts from heterogeneous data sources: UML
models (by means of visual modeling environments), relational schemas of any
relational database management system (through the Rational Rose tool), and XML
schemas. Moreover, third-party researchers and developers are bringing new tools to
work on ontologies through EMF and graphical Domain Specific Languages.
Therefore, EMF has become an industrial framework for MDA.

eq Set{ N , M } -> select (BB ; PL ; Col) = if (N :: BB (PL ; Col)) then Set{ N } -> including ((Set{ M } -> select (BB ; PL ; Col))) -> flatten
else Set{ M } -> select (BB ; PL ; Col) fi .

eq Set{ N } -> select (BB ; PL ; Col) = if (N :: BB (PL ; Col)) then Set{ N } else empty-set fi .
eq empty-set -> select (BB ; PL ; Col) = empty-set .

To perform OCL queries over EMF software artefacts, two types of projection
mechanisms have been specified. On the one hand, we have defined a projection
mechanism that obtains the algebraic specification5 that corresponds to a specific
Ecore model automatically by applying generative programming techniques. On the
other hand, another projection mechanism permits us to project an Ecore model
instance as a term of the algebra that corresponds to the Ecore model.

As shown in Fig. 3, an Ecore model may represent either a metamodel at the M2-
layer (for instance, the UML metamodel) or a model at the M1-layer (for instance, a
UML model). Similarly, an Ecore model instance may represent either a model that
conforms to a metamodel at the M1-layer (for instance, a UML model) or a model
instance at the M0-layer (for instance, the instances of a UML model). From now on,
the OCL support is explained by using the example of the UML model, although it
would be exactly the same as defining OCL queries over Ecore metamodels.

Fig. 3. EMF and Maude conceptual integration

4.1. A model as an algebraic specification

To query a model, it must be represented as an algebraic specification in Maude. This
specification is split in two parts: the generic OCL specification that is defined in the
parameterized module OCL-SUPPORT{X::TRIV} and the user-defined types in the
model.

4.1.1 The algebraic signature of a model (SigMM)

An Ecore model is mainly constituted by EClass instances (informally called classes)
that are related to each other by means of inheritance relationships and EReference
instances (informally called references in Ecore and associations in UML). They are

5 The algebraic specification that is generated for a given metamodel (defined in EMF as an

Ecore model) permits the representation of models as algebraic terms. Thus, models can be
manipulated by our model management operators. Algebraic specifications of this kind do
not specify operational semantics for the concepts of the metamodel; they only permit the
representation of information for model management issues.

Algebraic
specification
Algebraic

specification

TermTerm

EMF Maude

Universal
Algebra

Universal
AlgebraM2-layer

M1-layer

M0-layer

MOMENT
Projectors

M3-layer

M2-layer

M1-layer

Ecore

Ecore
Model

Ecore
Model

Instance

used to generate an algebraic specification that is used as an actual parameter for the
OCL-SUPPORT{X::TRIV} module. Informally, the following tasks are involved in
the generation of Maude code from a model:
− Signature generation: An Ecore class is constituted by attributes and references.

This information is used to generate a sort that represents the collection of
instances of this class and a constructor, whose arguments are: an internal
identifier, a group of arguments that represent the attributes (basic data types) and a
group of identifier collections (representing references). For instance, the
RegularTrip class in Fig. 1 is used to generate the following Maude code:
sorts RegularTrip .
op `(RegularTrip_____`) : Qid Int Int OrderedSet {QID} OrderedSet {QID} -> RegularTrip [ctor] .
where the first argument is the internal identifier of the instance, the second
argument is the inherited tripnr attribute, the third argument is the availableSeats
argument, the fourth argument is the inherited coach reference (UML role), and the
fifth argument is the passengers reference (UML role). This template is only
applied to specific classes. When a class is defined as abstract, the code only
contains the declaration of the code and no constructor is generated, indicating that
this class cannot be instantiated.

− Kind structure generation: class inheritance is represented by means of subsort
relationships in Maude. In the example, the RegularTrip class is a specialization of
the Trip class. In the Maude specification, the sort RegularTrip is defined as a
subsort of the Trip sort.

− Kind unification: all the sorts that are generated in an algebraic specification are
encapsulated within the same kind, by adding a root supersort, called tripNode
(where trip is the name of the package that contains the model definition). This sort
permits the definition of the view between the model algebraic specification and
the formal parameter of the OCL-SUPPORT{X::TRIV} module. All the sorts that
have no supersort must be related to root supersort by means of a subsort
relationship. This allows all the terms that represent instances of model classes to
belong to this sort, thereby becoming elements of a collection.

− Signature generation: the generated elements applying the previous templates are
encapsulated within a module. The automatically generated module for the
example model is called sigtrip.

− View generation: to use the signature that is generated for a model as actual
parameter for the module OCL-SUPPORT{X::TRIV}, a view is defined containing
the mapping between the Elt sort of the TRIV theory and the generated root sort for
the model. The generated view for the model in the example is as follows:
view vtrip from TRIV to sigtrip is sort Elt to tripNode . endv

4.1.2 The algebraic specification of a model

The instance of a model is represented as a set of instances of the classes that
constitute the model MM. To define model instances as sets, the signature that is
obtained from the definition of the model is used as actual parameter for the
parameterized module that contains the generic algebraic specification of OCL by
means of the generated view.

The instantiated module OCL-SUPPORT{MM} is contained in another module,
called sptrip in the example. This module also contains the operations that are needed
to navigate the model by means of either the attributes or the roles of a class.

The operation to navigate a reference (UML role) has the following skeleton:
op _::_`(_`) : X$Elt Fun{X} Collection{X} -> Collection{X} [ctor] .
where X$Elt represents an element of the model instance (a class instance), Fun{X}
represents the symbol of the role, the Collection{X} argument represents the model
instance (which is needed to navigate the model), and the Collection{X} return
parameter represents the collection of class instances that is obtained by means of the
navigation operation. For example, to navigate through the reference coach of a
RegularTrip class instance, called rt, of the a model instance, called ModelInstance,
we use the following expression:
rt :: coach (ModelInstance)

The operation to obtain the value of an attribute has the following skeletons,
depending on the attribute type:
op _::_ : X$Elt YFun{X} -> Y [ctor] . (where Y = {Int, Float, Bool, String, Qid})

For example, to obtain the value of the availableSeats of a TripRegular class
instance, called rt, we use the following expression:
rt :: availableSeats

Finally, the module sptrip contains all the operations that are needed to define an
instance of a model (constructors to define collections, to define basic data type
values and user-defined types) and to apply OCL queries to instances of any model
(collection operations, iterators, and user-defined navigation operations). Therefore,
the membership equational theory that permits the query of the instances of a specific
model is defined by the tuple (SOCL, OPOCL ∪ OPQUERY, EOCL), where:

SOCL = SSimpleDataType ∪ SCollections ∪ SCollectionOperations ∪ SIterators ∪ SUserDefinedClasses

OPOCL = OPSimpleDataTypes ∪ OPCollections ∪ OPUserDefinedTypes
OPQUERY = OPCollectionOperations ∪ OPIterators ∪ OPUserDefinedNavigationOperations

EOCL = ECollectionOperators ∪ EIterators ∪ EUserDefinedNavigationOperations

4.2. An instance of a model as an algebraic term

OCL queries are performed over instances of models. The definition of a model can
be graphically performed by means of EMF. Then, it can be automatically serialized
to a term that represents a set of instances of the classes that constitute the model. The
serialization uses the algebraic specification that is generated for a model as
mentioned above.

For example, the instance of the model Trip (shown in Fig. 4) is serialized as a set,
where all the elements are instances of the classes of the model, as follows:

Set { (Coach ‘coach1 1 10 OrderedSet { ‘person1 }),
(RegularTrip ‘trip1 1 9 OrderedSet {‘coach1 } OrderedSet { ‘person1}),
(Person ‘person1 "Peter" OrderedSet { ‘trip1 }) }

The internal structure of a term is transparent to the user of the algebraic
specification due to the navigation operations, which permit the user to navigate in an
OCL-like way throughout the roles and attributes of the objects of the model instance.

Fig. 4. Object diagram defined as an instance of the model defined in Fig. 1

Therefore, the query that is used in the invariant in Section 2 can be written by
defining the body expression of the forAll iterator as a body operation. This body
operation checks that all the regular trips have a lower number of passengers than the
number established by the numberOfSeats attribute of the corresponding Coach
instance. The Maude code that is automatically obtained for the body expression of
the forAll operator in the example is as follows:
var self : trip-Trip . var tripModel : Set{trip} .
op notOverbooked : -> BoolBody{trip} [ctor].
ceq self :: notOverbooked (PL ; tripModel) =
 ((((self :: oclAsType (? "RegularTrip" ; tripModel)) :: passengers (tripModel))
 -> size) <= ((self :: coach (tripModel) :: numberOfSeats) -> sum))
if self :: trip-Trip .
eq self :: notOverbooked (PL ; tripModel) = false [owise].
where self is a variable of type Trip and tripModel is a set that represents the model
instance to be queried. The query that is used in the body of the invariant can be
coded as follows:
red self :: trips (tripModel) -> select (oclIsTypeOf ; “RegularTrip” ; tripModel) -> forAll
(notOverbooked ; empty-params ; tripModel) .
where self is a variable of type Coach, tripModel is a variable that contains the model
instance to be checked, and the select and the forAll operation provide the body
expression of the invariant in Maude code by using the oclIsTypeOf operator and the
above body expression notOverbooked.

5 MOMENT-OCL: a prototype for executing algebraic OCL
expressions within the Eclipse Modeling Framework

The OCL algebraic specification that has been presented in the paper permits both
the representation of models as sets and the use of queries and invariants over them.
This permits the use of OCL expressions in algebraic model transformations, such as
those presented in [6]. In addition, we have developed a simple OCL editor that
permits the evaluation of OCL queries and invariants over EMF models or model
instances. In this section, we provide a brief description of the architecture of this
prototype, which is called MOMENT-OCL.

Fig. 6 shows the components of the MOMENT-OCL prototype that permit the
execution of algebraic OCL expressions over EMF models:
− The OCL Projector component is the module that projects the OCL expression to

Maude code. It makes use of the Kent OCL library [14] to validate the syntax and
the semantics of the expression.

The process of compilation from OCL to Maude follows the typical structure of
a language processor. The process is divided in two phases: an initial analysis
phase and a second synthesis phase.

tipnr : int = 1
availableSeats : int = 9

trip1 : RegularTrip

name : string = Peter
person1 : Person

id : int = 1
numberOfSeats : int = 10

coach1 : Coach

Fig. 5. MOMENT-OCL Architecture

In the first phase, we have reused the OCL support of the Kent Modelling
Framework (KMF) [15], which provides lexical, syntactical and semantical
analysis of OCL expressions over an EMF model. KMF analyzes an OCL
expression, taking into account the semantics of the model, and produces an
Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis
phase.

In the second phase, once an OCL expression has been analyzed by KMF
correctly, the AST is parsed and Maude code for body expressions, queries and
invariants are produced in order to evaluate OCL expressions over EMF models in
Maude.

− The Module Loader component obtains the algebraic specification from a
metamodel, by instantiating the OCL-SUPPORT{X::TRIV} module with the
signature obtained for a specific metamodel. This algebraic specification is
extended with the Maude code obtained from the compilation of OCL expressions
by means of the OCL Projector component. The Module Loader uses three other
components: the M2 Projector, which projects a metamodel MM (the Coach model
in the example) as the signature SigMM; the M1 Bridge, which projects a model
(model instance in the example) as a term of the corresponding algebraic
specification OCL-SUPPORT{MM}; and the Kernel Loader, which instantiates
the parameterized algebraic specification of OCL with the signature SigMM,
providing the formal environment where OCL expressions for the model MM can
be evaluated.

− The OCL Editor permits the definition of OCL queries and invariants over EMF
models and provides syntactical and semantical analyses of the expressions by
reusing this functionality from the KMF. It permits the evaluation of queries and
invariants. Finally, there is an option to show the generated Maude code which
specifies the operational semantics for the OCL expressions for debugging
purposes.

The editor (shown in Fig. 7) consists of a tree viewer, a properties view, and a
console to show results. The tree viewer is the main window of the application.
The information is shown in a hierarchical structure. The first step is to consider a
model and its instance specifying the paths of the respective XMI files, where they
are defined. The second step consists in specifying different OCL contexts for the
model selected in the first step. Finally, we can define groups of queries or
invariants for each context. It is possible to evaluate all the invariants defined in a
model or only those defined in a specific context. The queries and invariants have
two attributes, a name to identify them, which is useful to visualize the result of a
group of invariants, and the expression, which can be written in an OCL editor.

If we consider an invariant or query, we can analyze the expression syntactically
and semantically, evaluate it by showing the result, or parse it to Maude code, as
indicated in Fig. 7.

Fig. 6. MOMENT-OCL screenshot

6 Related works

Although OCL is not as well supported as UML in some CASE tools, there is a
growing interest in providing support for OCL in order to achieve different goals. In
[16], several tools that support OCL are studied. Taking them and others into account,
some technological examples, which are classified by their main goal, are provided:
− Model transformation: MOMENT, ATL, YATL.
− Model verification: the KeY System.
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit, the

Kent OCL tool.
− Code generation (also for requirements validation): Octopus, OCLE.
− OCL Testing: HOL/OCL.

Nevertheless, only a few of them rely on formal methods to provide support for the
operational semantics of OCL, and even fewer tools are integrated in (commercial)
CASE tools. We focus on some tools that rely on formal methods in this section.

The KeY system [17] provides functionality for formal specification and deductive
verification within a commercial CASE tool (Together Control Center). In this
approach, the user defines a software artefact in UML that can be annotated with OCL
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic
logic for Java) that can be reduced by means of an interactive theorem prover.

The USE tool [18] provides interactive validation of OCL constraints over a
model. This tool reads the input model and the OCL constraints from textual
resources, supporting class diagrams, object diagrams and sequence diagrams.
Afterwards, objects and links can be graphically created to define a snapshot of a

running system. This tool has been extended for the automatic generation of test cases
and validation cases.

The ITP/OCL tool [19] provides automatic validation of UML static class
diagrams with respect to OCL constraints. It provides an algebraic OCL specification
using Maude, where UML class diagrams and object diagrams are formalized by
means of algebraic specifications in membership equational logic and where OCL
constraints are defined as formulas in membership equational logic theories. A
graphical front-end is being developed for the ITP/OCL tool, which permits the
definition of class diagrams and the definition of correct object diagrams.

In these last approaches, only UML diagrams are considered for validating OCL
expressions. In the MOMENT-OCL specification, OCL queries can be automatically
applied either to metamodels or to models that may be defined in EMF by making use
of the Maude parameterization mechanism, following a more automated model-driven
oriented approach. In our approach, while Maude is used to execute OCL expressions,
the OCL expressions can be applied to graphical model-based software artefacts
through the EMF. Whenever EMF, and related support, is used to develop a (domain
specific or UML) modelling environment, we can use MOMENT-OCL to provide
invariant checking and query evaluation. Thus, our philosophy does not consist in
developing a new modelling environment to provide OCL support, we provide it for
other existing modelling approaches. Other java-based approaches that integrate OCL
within the EMF are [14, 20, 21], from which we took the Kent library to reuse the
analysis phase for the ocl compilation.

Several instances of a model can be easily queried with our tool. Nevertheless, as
the main goal of the algebraic specification of OCL in MOMENT-OCL was its use as
query and data manipulation language for model transformation, the part of OCL that
considers method validation has not been addressed yet.

7 Conclusions and Further Work

OCL is becoming a de-facto standard for defining constraints and queries in the
Model-Driven Engineering field. The number of tools that provide support for this
language is growing, and although the operational semantics of OCL is said to be
formal, only a few tools rely on formal methods to define its operational semantics.

In this paper, we present an algebraic specification of part of the operational
semantics of OCL 2.0 from an implementation point of view. This specification takes
advantage of the parameterization mechanism for the sake of reuse.

This specification is used to perform model queries in the EMF and to represent
EMF software artefacts as algebraic specifications or as terms that can be manipulated
by means of model management operators [11]. The OCL specification has been
developed generically so that it can be used for any kind of metamodel, model or
model instance. These operators use OCL queries to specify model transformations
that can be run in Maude as detailed in [6]. Thus, not only can OCL be studied in an
algebraic setting, it can also be used in the well-known modelling environment EMF.

Further work consists in exploiting the formal features of the OCL specification
from a more-theoretical point of view and its application to real case studies. By now,

MOMENT-OCL permits the analysis, compilation and evaluation of ocl expressions
over EMF models in Maude, but the output that is returned by Maude is not still
processed. Further work consists in providing such processing, allowing the user to
check the invariants that have failed in an evaluation.

References

1. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer Society Press 30
(1997) 110-111

2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. (2003)

3. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)

4. OMG: Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15. (2004)
5. OMG: MOF 2.0 QVT final adopted specification (ptc/05-11-01). (2005)
6. Boronat, A., Carsí, J.A., Ramos, I.: Algebraic Specification of a Model Transformation

Engine. In: Proceedings of Fundamental Approaches to Software Engineering, FASE'06,
LNCS, Vol. 3922. Springer Vienna, Austria (2006)

7. Bézivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In: Proceedings of
OOPSLA 2003 Workshop, Anaheim, California (2003)

8. The Model Transformation Framework: http://www.alphaworks.ibm.com/tech/mtf
9. Warmer, J., Kleppe, A.: The Object Constraint Language, Second Edition, Getting Your

Models Ready for MDA. Addison-Wesley (2004)
10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:

Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285 (2002)
187-243

11. Boronat, A., Carsí, J.A., Ramos, I.: Automatic Support for Traceability in a Generic Model
Management Framework. In: Proceedings of Model Driven Architecture - Foundations and
Applications, First European Conference, ECMDA-FA 2005, LNCS, Vol. 3748. Springer
Nuremberg, Germany (2005) 316-330

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.:
Maude 2.2 manual and examples. (2005) http://maude.cs.uiuc.edu/maude2-manual/

13. The Eclipse Modeling Framework: http://www.eclipse.org/emf/
14. Kent Object Constraint Language Library: http://www.cs.kent.ac.uk/projects/ocl/index.html
15. Kent Modeling Framework: http://www.cs.kent.ac.uk/projects/kmf/
16. Toval, A., Requena, V., Fernández, J.L.: Emerging OCL tools. Software and System

Modeling 2 (2003) 248-261
17. Ahrendt, W., Baar, T., Beckert, B., Giese, M., Hähnle, R., Menzel, W., Mostowski, W.,

Schmitt, P.H.: The KeY System: Integrating Object-Oriented Design and Formal Methods.
In: Proceedings of Fundamental Approaches to Software Engineering. 5th International
Conference, FASE 20022306. Springer, Grenoble, France (2002) 327-330

18. Richters, M.: The USE tool: A UML-based Specification Environment. (2001)
http://www.db.informatik.uni-bremen.de/projects/USE/

19. Egea, M., Clavel, M.: The ITP/OCL tool. (2006) http://maude.sip.ucm.es/itp/ocl/
20. Vanwormhoudt, G.: EMF OCL Plugin. (2006)

http://www.enic.fr/people/Vanwormhoudt/siteEMFOCL/maven-reports.html
21. Eclipse Modeling Framework Technologies. (2006) http://www.eclipse.org/emft/projects/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

