
Formal Model Merging Applied to Class Diagram
Integration

Artur Boronat, José Á. Carsí, Isidro Ramos, Patricio Letelier
Department of Information Systems and Computation

Polytechnic University of Valencia
Camí de Vera s/n

46022 Valencia-Spain

{aboronat | pcarsi | iramos | letelier}@dsic.upv.es

ABSTRACT

The integration of software artifacts is present in many scenarios
of the Software Engineering field: object-oriented modeling,
relational databases, XML schemas, ontologies, aspect-oriented
programming, etc. In Model Management, software artifacts are
viewed as models that can be manipulated by means of generic
operators, which are specified independently of the context in
which they are used. One of these operators is Merge, which
enables the automated integration of models. Solutions for
merging models that are achieved by applying this operator are
more abstract and reusable than the ad-hoc solutions that are
pervasive in many contexts of the Software Engineering field. In
this paper, we present our automated approach for generic model
merging from a practical standpoint, providing support for
conflict resolution and traceability between software artifacts. We
focus on the definition of our operator Merge, applying it to Class
Diagrams integration.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering, Evolutionary prototyping, Object-oriented design
methods

D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering

D.2.13 [Reusable Software]: Reuse models

I.1 [SYMBOLIC AND ALGEBRAIC MANIPULATION]:
I.1.4 Applications

I.6.5 [Model Development]: Modeling methodologies

General Terms

Design, Experimentation, Languages.

Keywords

Model-Driven Engineering, Model Management, model merging,
conflict resolution.

1. INTRODUCTION
The Model-Driven Development philosophy [1] considers models
as the main assets in the software development process. Models
collect the information that describes the information system at a
high abstraction level, which permits the development of the
application in an automated way following generative
programming techniques [2]. In this process, models constitute
software artifacts that experience refinements from the problem
space (where they capture the requirements of the application) to
the solution space (where they specify the design, development
and deployment of the final software product).
During this refinement process, several tasks are applied to
models such as transformation and integration tasks. These tasks
can be performed from a model management point of view.
Model Management was presented in [3] as an approach to deal
with software artifacts by means of generic operators that do not
depend on metamodels by working on mappings between models.
Operators of this kind deal with models as first-class citizens,
increasing the level of abstraction by avoiding working at a
programming level and improving the reusability of the solution.
Based on our experience in formal model transformation and data
migration [4], we are working on the application of the model
management trend in the context of the Model-Driven
Development. We have developed a framework, called
MOMENT (MOdel manageMENT) [22], which is embedded into
the Eclipse platform [5] and that provides a set of generic
operators to deal with models through the Eclipse Modeling
Framework (EMF) [6]. Some of the simple operators defined are:
the union, intersection and difference between two models, the
transformation of a set of models to other model applying a QVT
transformation, the navigation through mappings, and so on.
Complex operators can be defined by composition of other
operators. In this paper, we present the operator Merge of the
MOMENT framework from a practical point of view. The
underlying formalism of our model management approach is
Maude [7]. We apply it as a novel solution for the integration of
UML Class Diagrams in a Use Case Driven software development
process.

The structure of the paper is as follows: Section 2 presents a case
study used as an example in the rest of the paper; Section 3
describes our approach for dealing with models by means of an
industrial modeling tool, and also informally presents the generic
semantics of the operator Merge; Section 4 presents the
customization of the operator Merge to the UML metamodel;
Section 5 explains the application of the operator Merge to the

case study; Section 6 discusses some related work; and Section 7
summarizes the advantages of our approach.

2. CASE STUDY: USE CASE ANALYSIS
USING PARTIAL CLASS DIAGRAMS
Software development methodologies based on UML propose an
approach where the process is Use Case Driven [8, 9]. This means
that all artifacts (including the Analysis and Design Model, its
implementation and the associated test specifications) have
traceability links from Use Cases. These artifacts are refined
through several transformation steps. Obtaining the Analysis
Model from the Use Case Model is possibly the transformation
that has the least chance of achieving total automation. The Use
Case Model must sacrifice precision in order to facilitate
readability and validation so that the analysis of use cases is
mainly a manual activity.

When the Use Case Model has many use cases, managing
traceability between each use case and the corresponding
elements in the resulting class diagram can be a difficult task. In
this scenario, it seems reasonable to work with each use case
separately and to register its partial class diagram (which is a
piece of the resulting class diagram that represents the Analysis
Model). Regarding traceability, this strategy is a pragmatic
solution, but when several team members work in parallel with
different use cases, inconsistencies or conflicts among partial
models often arise, which must be solved when obtaining the
integrated model.

We present a case study that illustrates how our operator Merge
can be used effectively to deal with the required needs established
above. We present part of a system for managing submissions that
are received in a conference. In our example, we will focus on the
fragment of the Use Case Model shown in Figure 1. The actor
System Administrator manages user accounts. Authors submit
papers to the conference. The PCChair assigns submissions to

Figure 1. Use Case Model

Figure 2. Partial models associated to the corresponding Use Cases

PCMembers. Each submission is assessed by several PCMembers
using review forms. When all the reviews are completed, the
PCChair ranks the submissions according to the assessment
contained in the review forms. Since there is a limit to the
numbers of papers that can be presented, and taking into account
the established ranking, some submissions are selected, and the
rest are rejected. Then, all authors are notified by email attaching
the review forms of their submission. Figure 2 shows the Class
Diagrams that support the functionality required for the
corresponding Use Case.

3. THE GENERIC SEMANTICS OF THE
OPERATOR Merge
In a Model-Driven Development context [10], models consist of
sets of elements that describe some physical, abstract, or
hypothetical reality. In the process of defining a model,
abstraction and classification are guidelines to be taken into
account. A metamodel is simply a model of a modeling language.
It defines the structure, and constraints for a family of models.

In our framework, a metamodel is viewed as an algebraic
specification where the model management operators are defined
so that they can be applied to all the models of the metamodel. To
fulfill this in our framework, the Ecore metamodel can be broken
down into three well-distinguished parts:

1. A parameterized module called MOMENT-OP, which provides
our generic model management operators independently of any
metamodel (the operator Merge is one of them). This module
also provides the needed constructors to specify a model as a
set of elements, based on an axiomatized specification of a set
theory.

2. A signature called sigEcore, which provides the constructors
of a specific metamodel which is specified in order to
represent a model by means of algebraic terms. For example,
in the Ecore metamodel algebraic specification, we have the
constructs that define a class, an attribute, an operation, and so
on. This signature is automatically generated from a
metamodel (see [23] for further details), which is specified by
using the meta-metamodel Ecore in the EMF. In this case, the
proper metamodel Ecore has been used to define itself. This
signature constitutes the actual parameter for the module
MOMENT-OP.

3. A module called spEcore, which instantiates the parameterized
module MOMENT-OP by passing sigEcore as actual
parameter. In the instantiation process, the generic operators
are customized to the constructs of the metamodel. This
provides the constructors that are needed to specify a model of
this metamodel as a set of elements. This fact also provides the
generic operators that can be automatically applied to models
of this kind. In this module, the specification of the operator
Merge can also be customized to a metamodel by simply
adding new axioms to the operators. This module constitutes
the algebraic specification of a metamodel in MOMENT. To
enable the manipulation of UML models, they have to be
represented as terms of the spEcore algebraic specification.
This task is automatically performed by MOMENT from
models expressed in Ecore format in the EMF.

In MOMENT, the operator Merge is defined axiomatically using
the Maude algebraic language. Maude allows us to specify the
operator in an abstract, modular and scalable manner so that we
can define its semantics from a generic and reusable point of
view. The operator can also be customized in an ad-hoc and more
accurate way, taking advantage of both complementary
standpoints.

3.1 The Generic Semantics of the Operator
Merge
The operator Merge takes two models as input and produces a
third one. If A and B are models (represented as terms) in a
specific metamodel algebraic specification, the application of the
operator Merge on them produces a model C, which consists of
the members of A together with the members of B, i.e. the union
of A and B. Taking into account that duplicates are not allowed in
a model, the union is disjoint.

To define the semantics of the operator Merge, we need to
introduce three concepts: the equivalence relationship, the conflict
resolution strategy and the refreshment of a construct.

First, a semantic equivalence relationship is a bidirectional
function between elements that belong to different models but to
the same metamodel. This indicates that they are semantically the
same software artifact although they may differ syntactically.
This relation is embodied by the operator Equals. The generic
semantics of Equals coincides with the syntactical equivalence,
although this generic semantics can be enriched by means of OCL
expressions that take into account the structure and semantics of a
specific metamodel.

Second, we have to deal with conflicts. During a model merging
process, when two software artifacts (each of which belongs to a
different model) are supposed to be semantically the same, one of
them must be erased. Their syntactical differences cast doubt on
which should be the syntactical structure for the merged element.
Here, the conflict resolution strategy comes into play. The
conflict resolution strategy is provided by the operator Resolve,
whose generic semantics consists of the preferred model strategy.
When the operator Merge is applied to two models, one has to be
chosen as preferred. In this way, when two groups of elements
(that belong to different models) are semantically equivalent due
to the Equals morphism, although they differ syntactically, the
elements of the preferred model prevail. The semantics of the
Resolve operator can also be customized for a specific metamodel
in the same way that we can do with the Equals operator.
 Third, refreshments are needed to copy non-duplicated elements
into the merged model in order to maintain its references in a
valid state. If we merge models B and C in our case study, taking
model B as the preferred one, the reference Submission of the
class PCMember of model C is copied to the merged model. As
the class Submission of model C has been replaced by the one
from model B, the reference, which points to the class Submission
of model C, is no longer valid. Thus, this reference must be
updated. The update of a specific metamodel construct term is
embodied by the operator Refresh.

The operator Merge uses the equivalence relationship defined for
a metamodel to detect duplicated elements between the two input
models. When two duplicated elements are found, the conflict
resolution strategy is applied to them in order to obtain a merged

element, which is then added to the output model. The elements
that belong to only one model, without being duplicated in the
other one, are refreshed and directly copied into the merged
model.

The outputs of the operator Merge are a merged model and two
models of mappings that relate the elements of the input models
to the elements of the output merged model. Therefore, these
mappings, which are automatically generated by the operator
Merge, provide full support for keeping traceability between the
input models and the new merged one.

4. SPECIFIC SEMANTICS FOR THE
ECORE METAMODEL TO MERGE UML
CLASS DIAGRAMS
In this section, we present the specific semantics of the operator
Merge to integrate UML Class Diagrams, which are implemented
in the EMF by means of the Ecore metamodel. To define the
specific semantics for the Ecore metamodel, we only have to add
specific axioms for the operators Equals and Resolve.
Consequently, the axiomatic definition of the operator Merge
remains the same. The equivalence relationships that relate two
elements of the metamodel Ecore take into account the type of a
construct, its name, and its container. In an equivalence
relationship, the names of two instances that have the same type
are analyzed in three steps1: two instances may be equal if they
have exactly the same name; if not, two instances may be equal if

1 We have chosen these principles for the example. Nevertheless,

they can be customized to a specific metamodel by the user.
Nothing impedes us to add semantic annotations to the elements
of a model and use this information the determine which
elements are equals or not

their names are defined as synonyms in a thesaurus; if not, they
may be equal if a heuristic function for comparing strings
establishes that they are similar within an acceptable range.

Moreover, almost all the relationships add a container condition.
This means that two instances of the same type are equal if, in
addition to the name condition, they have an equivalent container
instance. In Figure 3, we provide the conditional equation that
represents an equivalence relationship for EAttribute primitive in
MAUDE notation. This equation is automatically obtained by
compilation of an OCL expression [23]. In the merging of the
partial models B and C of our case study, when this equivalence
relationship is applied, the attribute title of the class Submission
(of model B) is equivalent to the attribute title of the class
Submission (of model C) because they have the same name and
they belong to equivalent classes.

Several axioms have also been added to the Resolve operator in
order to take into account the constructs of the Ecore metamodel
that contain other elements. For example, a class can contain
attributes, references and operations, among others. In the case
study, when we integrate the class Submission of model B with
the class Submission of model C, we have to integrate their
respective attributes, references and operations.

5. MERGING PROCESS
In this section, we present the merging process that is used to
integrate the five partial class diagrams of the case study. The
four steps followed are indicated in Table 1, where the first
argument for the merge operator is the preferred one. In this table,
the first column indicates the step number; the second column
shows the invocation of the operator Merge; the third column
describes some of the main conflicts that have appeared during
the merging step; the fourth column indicates the partial models

Table 1. The steps of the Class Diagram merging process

 Model Merging Conflicts Models Resolution
1 <BC, mapB2BC, mapC2BC> =

Merge(B, C)
The multiplicity of the attribute
keywords (class Submission).

B – C Multiplicity [1..5]
(preferred model)

2 <DE, mapD2DE, mapE2DE> =
Merge(D, E)

3.1. The multiplicity of the
attribute authors (class
Submission)

B – E Multiplicity [1..*]
(preferred model)

3.2. Type of the attribute
accepted (class Submission)

B – E Type Boolean
(preferred model)

3 <BCDE,mapDE2BCDE,
mapBC2BCDE > =
Merge(DE, BC)

3.3. Multiplicities of the
association between the classes
Submission and PCMember

C – D Multiplicities 1..1 –
1..1 (preferred
model)

4 <ABCDE, mapA2ABCDE,
MapBCDE2ABCDE> =
Merge(A, BCDE)

4.1. The attribute userid (class
User) and the attribute login
(class PCMember) are identified
as the same, by means of the
thesaurus.

A – D The inherited feature
prevails by means of
the EClass axiom
for the operator
Resolve.

Figure 3. Equivalence relationship for the EAttribute primitive

ceq Equals N1 Model1 N2 Model2 =
 if ((N1.name) == (N2.name)) and (Equals (N1.eContainingClass(Model1)) Model1 (N2.eContainingClass(Model2)) Model2) then true
 else if (Synonym (N1.name) (N2.name)) and (Equals (N1.eContainingClass(Model1)) Model1 (N2.eContainingClass(Model2)) Model2) then true
 else if (Similar (N1.name) (N2.name) 95.0) and (Equals (N1.eContainingClass(Model1)) Model1 (N2.eContainingClass(Model2)) Model2) then true
 else false
 fi fi fi
if (N1 oclIsTypeOf (? “EAttribute”; Model1)) and (N2 oclIsTypeOf(? “EAttribute” ; Model2)) *** Condition

involved that contain the conflicting elements; and the latter
indicates the solution of the conflict by the Resolve operator.

After each step of the merging process, two models of mappings
are automatically generated. These mappings provide full support
for traceability by registering the transformation applied to the
elements of the source partial models and by relating them to
elements of the merged model. In the MOMENT framework, a set
of operators is provided to navigate mappings bidirectionally:
from a partial model to the merged model (providing support for
the propagation of changes from a specific use case to the merged
model, as well as preserving the changes applied to the latter); or
from the merged model to a partial class diagram (providing
support in order to update a specific use case). Moreover, such
mappings are considered as models so that generic model
management operators can also be applied to them.

In Figure 4, we show the resulting merged model resulting from
step 4. Although the user describes the semantics of the operator
Merge for a specific metamodel, as the model merging is
completely automated, there might exist some undesired results in
the merged model that should be fixed. In this figure, elements of
this kind are highlighted by a discontinuous line. Therefore, the
directed association that comes from partial model D should be
deleted, and the multiplicity of the existing association between
the Submission and the PCMember classes should be updated
with the multiplicity that appears in partial model C.

In such cases, the user has the option to open the merged model to
review and update it. Merged models can be manipulated from
visual editors that are integrated in the Eclipse platform, such as
the EMF tree editor or the Omondo tool [11], which provides a
visual environment to edit UML models based on the Ecore
metamodel. Other industrial modeling environments can be used
to manipulate resulting models such as Rational Software
Architect [12]. These environments provide the added value of
code generation and the integration with other IBM software
development tools. Furthermore, in the MOMENT framework,
the operators that work on mappings can be used to follow the
performed merging process in order to automatically detect
changes in properties of elements like cardinality, type, addition
of attributes to a class, etc.

6. RELATED WORK
In [21], several approaches for model merging are presented. The
operator Merge is a model management operator that was
proposed in [13] and further developed in [14] afterwards. The
specification of this operator Merge is provided in terms of

imperative algorithms so that the operator Merge is embodied by
a complex algorithm that mixes control logic with the
functionality. Although the operator is independent of any
metamodel, it depends on an external operator to check the
constraints of a specific metamodel. Therefore, it might generate
inconsistent models and requires an auxiliary operator to work
properly. Moreover, as shown in [14], the algorithm may be
changed depending on the metamodel. In MOMENT, the operator
Merge remains completely reusable for any metamodel. To
consider new metamodels, the operators Equals and Resolve can
be customized by simply adding axioms to their respective
semantic definition, preserving monotonicity.

Another approach to provide the operator Merge from a model
management standpoint is presented in [15] by using graph
theory. The operator Merge is denotationally defined by means of
production rules. In both operational and graph-based approaches,
the operator Merge receives a model of mappings as input. This
model indicates the relationships between the elements of the
models that are going to be merged. These mappings have to be
defined manually or can be inferred by a operator Match that uses
heuristic functions [16] or historical information [17]. Our
operator Merge does not depend on mappings since the
equivalence relation has been defined axiomatically between
elements of the same metamodel in the operator Equals, at a
higher abstraction level. Another inconvenience of both model
management approaches is that they are not integrated in any
visual modeling environment. Therefore, they cannot be used in a
model-driven development process in the way that the MOMENT
framework is able to do through the Eclipse platform.

The Generic Model Weaver AMW [19] is a tool that permits the
definition of mapping models (called weaving models) between
EMF models in the ATLAS Model Management Architecture.
AMW provide a basic weaving metamodel that can be extended
to permit the definition of complex mappings. These mappings
are usually defined by the user, although they may be inferred by
means of heuristics, as in [16]. This tool constitutes a nice
solution when the weaving metamodel can change. It also
provides the basis for a merge operator on the grounds that a
weaving model, which is defined between two models, can be
used as input for a model transformation that can obtain the
merged model (as mentioned in [19]). In MOMENT, model
weavings are generated by model management operators
automatically in a traceability model, and can be manipulated by
other operators.

An interesting operation-based implementation of the three-way
merge is presented in [20]. The union model that permits this kind

Figure 4. Resulting merged model for the case study.

of merging is built on top of a difference operator. The difference
operator is based on the assumption that all the elements that
participate in a model must have a unique identifier. This operator
uses the identifiers in order to check if two elements are the same.
Our Merge operator is a state-based implementation of the two-
way merge so that it does not need a common base model in order
to merge two different models. In our approach the operator
Equals permits the definition of complex equivalence
relationships in an easy way. The three-way merge can be
specified as a complex operator in the Model Management arena,
as described in [14].

More specifically to the problem presented in the case study,
UML CASE tools permit the arrangement of Use Cases and their
corresponding partial Class Diagram into the same package.
Nevertheless, no option is provided to obtain the global Class
Diagram from the partial ones. The Rational Rose Model
Integration [18] is a tool that provides an ad-hoc solution to merge
UML models by basically using the name of the element to
determine equivalences, and using the preferred model strategy to
obtain the merged model. The equivalence relation and the
conflict resolution strategy cannot be customized by the user like
in MOMENT. Moreover, once the merged model is generated,
there is no way to relate the obtained model to the partial source
models in order to keep some degree of traceability.

7. CONCLUSIONS
In this paper, we have presented a state-based automated
approach for model merging from a model management
standpoint. We have briefly introduced how we deal with
algebraic models from a visual modeling environment, and we
have described the generic semantics of our operator Merge. A
customization of the operator has been performed for the Ecore
metamodel in order to solve the integration of the partial class
diagrams proposed in the case study. The operator takes
advantage of the reusability and modularity features of the
algebraic specifications. Therefore, it becomes a scalable operator
that can be easily specialized to a specific metamodel and that can
be intuitively used with other operators. As we have shown in our
case study, our approach provides support for maintaining
traceability between the Use Case model and the Analysis model.
The MOMENT framework offers other operators that enable the
synchronization of changes between both models, wherever the
changes occur, either in the partial models or in the merged
models.

In the current version of the MOMENT framework, the specific
semantics of the operator Merge is directly introduced using the
Maude syntax. In future work, we plan to develop visual
interfaces to define the axioms needed to customize the
MOMENT operators in order to improve the usability of our tool.

8. REFERENCES
[1] Frankel, D. S.: Model Driven Architecture: Applying MDA

to Enterprise Computing. John Wiley & Sons OMG Press.
[2] Czarnecki, K., Eisenecker, U.: Generative Programming:

Methods, Tools, and Applications.Addisson-Wesley (2000).
ISBN 0-201-30977-7, pag. 267-304.

[3] Bernstein, P.A: Applying Model Management to Classical
Meta Data Problems. pp. 209-220, CIDR 2003.

[4] Boronat, A., Pérez, J., Carsí, J. Á., Ramos, I.: Two
experiencies in software dynamics. Journal of Universal
Science Computer. Special issue on Breakthroughs and
Challenges in Software Engineering. Vol. 10 (issue 4). April
2004.

[5] Eclipse site: www.eclipse.org
[6] The EMF site:

http://download.eclipse.org/tools/emf/scripts/home.php
[7] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,

Meseguer, J., Quesada, J.F.: Maude: specification and
programming in rewriting logic. Theoretical Computer
Science, 285(2):187-243, 2002.

[8] Kruchten P. The Rational Unified Process: An Introduction.
Addison-Wesley Professional. 2003.

[9] Larman C. Applying UML and Patterns : An Introduction to
Object-Oriented Analysis and Design and Iterative
Development. Prentice Hall. 2004.

[10] Mellor, S. J., Scott, K., Uhl, A., Weise, D.: MDA Distilled:
Principles of Model-Driven Architecture. Addison Wesley
(2004). ISBN 0-201-78891-8.

[11] The Omondo site: www.omondo.com
[12] IBM Rational Software Architect: http://www-

306.ibm.com/software/awdtools/architect/swarchitect/
[13] Bernstein, P.A., Levy, A.Y., Pottinger, R.A.: A Vision for

Management of Complex Models. MRS Tech. Rep. MSR-
TR-2000-53, (in SIGMOD Record 29, 4 (Dec. '00)).

[14] Pottinger, R.A., Bernstein, P. A.: Merging Models Based on
Given Correspondences.” VLDB 2003.

[15] Song, G., Zhang, K., Kong, J.: Model Management Through
Graph Transformation. IEEE VL/HCC'04. Rome, Italy. 2004.

[16] Madhavan, J., P.A. Bernstein, and E. Rahm: Generic Schema
Matching using Cupid. VLDB 2001.

[17] Madhavan, J., Bernstein, P. A., Chen, K., Halevy, A.Y.,
Shenoy, P.: Corpus-based Schema Matching," Workshop on
Information Integration on the Web, at IJCAI'2003,pp.59-66.

[18] Rational Suite: http://www-306.ibm.com/software/sw-
atoz/indexR.html

[19] Didonet Del Fabro, M, Bézivin, J, Jouault, F, Breton, E, and
Gueltas, G : AMW: a generic model weaver. Proceedings of
the 1ère Journée sur l'Ingénierie Dirigée par les Modèles
(IDM05). 2005.

[20] Alanen, M, and Porres, I: Difference and Union of Models.
In UML 2003 - The Unified Modeling Language, Oct 2003.

[21] Mens, T.: A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, Volume 28 ,
Issue 5 (May 2002). Pages: 449 – 462.

[22] The MOMENT site: http://moment.dsic.upv.es/
[23] Boronat, A., Ramos, I., Carsí J.A.: Definition of OCL 2.0

Operational Semantics by means of a Parameterized
Algebraic Specification. 1st workshop on Algebraic
Foundations for OCL and Applications (WAFOCA’06)
Valencia, Spain, march 22nd, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

