
Automatic Reengineering in MDA Using Rewriting Logic as Transformation
Engine

Artur Boronat, José Á. Carsí, Isidro Ramos
Department of Information Systems and Computation

Polytechnic University of Valencia
Camí de Vera s/n

46022 Valencia-Spain
{aboronat, pcarsi, iramos}@dsic.upv.es

Abstract

Legacy systems are information systems that have

been developed by means of methods, tools and
database management systems that have become
obsolete, but they are still being used due to their
reliability. As time goes on, the maintenance of this
software becomes more complex, expensive and
painful. The OMG’s MDA initiative provides some
guides to develop software that raise models and
transformations between them as first class citizens.
This point of view provides a precise way to develop a
new application from the legacy one. The MOMENT
Framework supports automatic formal model
transformations in MDA. This model transformation
approach is based on the algebraic specification of
models and benefits from mature term rewriting system
technology to perform model transformation using
rewriting logic. In this paper, we present how we apply
this formal transformation mechanism to recover a
legacy relational database, obtaining a UML-based
application. This approach keeps the legacy knowledge
by pumping the legacy data to the new database
generated from the UML model. Our approach
enhances the integration between formal environments
and industrial technologies such as .NET technology,
and exploits the best features of both.

1. Introduction

Legacy systems can be defined informally as
“software we do not know what to do with, but it is still
performing a useful job” [1]. They are information
systems that have been developed by means of
methods, tools and database management systems that
have become obsolete, but they are still being used due

to their reliability. They are characterized by the
following features:
− Software architecture based on obsolete technology

that has probably been patched in order to adapt to
new changes in requirements. This fact complicates
the maintenance of the application.

− Poor, complex documentation that prevents
effective maintenance or software updating, making
it necessary to check the source code to understand
the functionality of the system.

− Cumulative experience working with the system that
has filled its database with information that is
significant for the company.
As in all complex systems with a medium life cycle,

the requirements for this kind of applications go on
changing at the same rate as technology does. There are
two main approaches to performing changes in these
systems. On the one hand, there is the patching of the
legacy system that has obsolete technology code. The
disadvantages to this approach are that the technology
does not consider new features to improve either code
reuse, quality or documentation generation, and that the
staff that will develop the new part of the system needs
to be trained. On the other hand, the whole system can
be developed with a new technology taking advantage
of all its features. Both approaches imply a high cost,
but we prefer the second option because the first one
only temporarily delays the translation into a new
technology, making maintenance harder and harder
each time the system is changed.

The OMG's Model Driven Architecture (MDA)
initiative [2] is set in this context and provides several
proposals to define models, through the standard Meta-
Object Facility (MOF) [3]. It also offers proposals to
perform model transformations by means of the
Query/View/Transformations (QVT) language, which
is still in its early stages [4]. While a lot of attention
has been given to the transformation of platform-

independent models into platform-specific models, the
scope of MDA goes beyond this in an attempt to model
all the features of a software product throughout its life
cycle. Nonetheless, a precise technique to provide
formal support for the entire process of model
transformation has not yet been developed.

The MOMENT (MOdel manageMENT) platform
follows this trend by providing a framework where
models can be represented using an algebraic approach.
MOMENT is based on an algebra that is made up of
sorts and operators that permit the representation of
any model as a term that can be automatically
manipulated by means of operators. The MOMENT
Framework benefits from the best features of current
visual CASE tools and the main advantages of formal
environments such as term rewriting systems,
combining the best of both industry and research.

This paper presents the application of the
MOMENT framework to a reengineering problem
where a UML model is obtained from a legacy
relational database by means of the MOMENT model
transformation, which relies on a term rewriting
system.

The paper is structured as follows: Section 2
indicates an example to illustrate the transformation
process through the paper; Section 3 provides an
overview of the MOMENT Framework; Section 4
presents the model transformation mechanism of the
MOMENT Framework, focusing on the use of a Term
Rewriting System (TRS) as a formal environment to
perform automatic model transformations; Section 5
presents other approaches to provide automatic support
for model transformations. Finally, Section 6
summarizes the work and indicates the future directions
of our research tasks.

2. Example of a Common Legacy System
Recovering Process

Consider a car maintenance company that has
worked for a long time for a large car dealership. The
maintenance company works with an old C application
where the information is stored in a simple relational
database that does not even consider integrity
constraints. The car dealership has recently acquired
the car maintenance company and its president has
decided to migrate the old application to a new OO
technology in order to improve maintenance and
efficiency. Therefore, the target application will be
developed by means of an OO programming language
although the database layer remains a relational
database. This time, new integrity constraints are

provided in the new relational database in order to
improve maintainability.

Consider the part of the legacy system that stores
information about invoices in the example. Each
invoice contains data about the task performed in a
specific period of time and at a specific price.

Figure 1. Legacy Database Recovering Example

To recover the legacy system, a designer has to

build a semantically equivalent OO conceptual schema
that captures the semantics that is disorganized in the
legacy system. This task is usually done manually and
involves high development costs. What is worse is that
the human factor does not guarantee an error-free
process to obtain a correct OO conceptual schema.
Step (1) constitutes a manual, reverse-engineering
process where the designer detects that the legacy table
can be broken down into two classes: one containing
the information about a performed task during a period
of time and another one representing the collection of
performed tasks for a specific customer, i.e., the
InvoiceLine class and the Invoice class. In this step,
works like those by [5], [6] and [7] can be applied to
obtain OO models from relational schemas.

Once the OO model is complete, the relational
database has to be generated (2). Here the designer can
use many CASE tools such as Rational Rose, Together
or System Architect in order to generate the new
relational schema automatically. Despite obtaining a
relational schema, these tools do not take into account
legacy data.

The cumulative experience of the maintenance
company is collected in its database and, it is expected
to be preserved in the new database (3). Several DBMS
allow for data migration using their ETL (Extract,
Transform & Load) tools. This migration can be done

by means of SQL statements or user defined scripts
which can be executed on the database. Although ETL
tools provide friendly interfaces to migrate data
between databases, DB administrators must write
migration code manually, and this is very costly in
terms of people and time.

In next sections, we explain the MOMENT
Framework and the way in which its application
provides a more efficient solution to this reengineering
problem.

3. The MOMENT Framework

The MOMENT (MOment manageMENT)
Framework is a modular architecture divided into the
three traditional layers: interface, functionality and
persistence. In each one of them, the environment
benefits from mature tools, such as graphical CASE
tools at the interface layer, term rewriting systems at
the functionality layer, and RDF repositories at the
persistence layer. Hence, the MOMENT Framework
aims at using the best features of each environment,
bringing industrial modeling tools closer to more
formal systems. Figure. 2 shows an overview of the
MOMENT Framework.

Figure 2. The MOMENT Framework

The functionality layer permits the representation of

models and the performance of transformations over
them. The core of the functionality layer is a module
called MOMENT Theory, which allows model
representation and manipulation by means of an
algebraic approach. We use the expressiveness of the
algebra that the platform is based on to define and
represent a model as an algebraic term. This algebra

represents models by means of terms of a sort called
Schema. These terms are made up of by concepts and
properties. The concepts are the main entities of a
model, and the properties either describe them with
values or establish relationships between them. The
properties contain information about cardinality,
indicating how many concepts can be related to the
owner of the property.

The MOMENT platform uses several metadata
layers to describe any kind of information including
new metadata types. This architecture is based on both
the classical four-layer metamodeling architecture
(following standards such as ISO [8] and CDIF [9])
and on the more modern four-layer framework
proposed in the MOF specification [3]. In our work, we
divide the platform into four abstract layers:
− The M0-layer collects the examples of all the

models, i.e., it holds the information that is
described by a data model of the M1-layer.

− The M1-layer contains the metadata that describes
data in the M0-layer and aggregates it by means of
models. This layer provides services to collect
examples of a reality in the lowest layer.

− The M2-layer contains the descriptions (meta-
metadata) that define the structure and semantics of
the metadata located at the M1-layer. This layer
groups meta-metadata as metamodels. A
metamodel is an "abstract language" that describes
different kinds of data. The M2-layer provides
services to manage models in the next lower layer.

− The M3-layer is the platform core, containing
services to specify any metamodel with the same
common representation mechanism. It is the most
abstract layer in the platform. It contains the
description of the structure and the semantics of the
meta-metadata, which is located at the M2-layer.
This layer provides the "abstract language" to define
different kinds of metadata.
The MOMENT Theory module also provides a

mechanism to define transformations between
metamodels. The TRS Manager module wraps a TRS,
which carries out the model transformation by applying
a set of rewriting rules automatically. We have used the
CafeOBJ environment as TRS [10]. The Theory
Compiler module permits the compilation of the
algebraic specification of a metamodel into a theory
based on equational logic. It also compiles the defined
mappings between the elements of the metamodels into
a theory based on rewriting logic in order to perform
the model transformation on the wrapped TRS. Some
of these modules have been developed using the
functional language F# [11], which provides
convenient features to work with algebraic

CASE Tool with graphic environment (MS VISIO)

Graphic Metaphor

Graphic
View

Graphic
Primitive

Compiler Interface

Equational
Theory

Rewriting
Theory

Semantic
Equivalence

TRS Graphic Interface

Algebra
Loader

Term Manager

Declarator Parser

Evaluator

Complete Step-by-Step

… other features
of the TRS

environmentM
O

M
E

N
T

 O
rc

h
es

tr
at

o
r

MOMENT Theory Theory Compiler

Equational
Theory

Rewriting
Theory

TRS Manager

Algebra
Loader

Term Manager

Declarator Parser

Evaluator

Complete Step-by-Step

… other features
of the TRS

environment

M
O

M
E

N
T

 S
D

K

Term Rewriting System (CafeObj)

RDF
Repository
(Redland)

CASE
Graphical
Repository

.mod.modM
O

M
E

N
T

P

er
si

st
en

ce

P
er

si
st

en
ce

F
u

n
ct

io
n

al
it

y
V

is
u

al
 In

te
rf

ac
e

Layers Constraints Queries Mappings

specifications and with imperative programming
environments such as .NET technology. A combination
of functional languages and algebraic specification
languages has permitted us to reach our goals. On the
one hand, the MOMENT algebra is implemented in F#,
which provides efficient structures for navigation and
specification manipulation. On the other hand, a TRS
provides a suitable environment to support automatic
model transformation.

4. Legacy Systems Recovery Process in
MOMENT

MDA raises the level of abstraction in the software

development process by treating models as primary
artifacts. Models are defined using modeling
languages, but when those languages are intended to be
used for anything more sophisticated than drawing
pictures, both their syntax and their semantics must be
specified. In this case, the use of formal languages
usually involves dealing with their complex syntax,
making them unpopular in industry. In this sense, the
MOMENT Framework is user-friendly and permits the
use of formal techniques from well-known CASE tools
to both define models by means of algebraic
specifications and to perform model transformations
using rewriting logic [12].

Rebuilding a legacy system into a semantically
equivalent one with a new technology can be treated as
a model transformation problem in the MDA context.
Our tool provides a generic model transformation
mechanism that has been applied to recover legacy
databases. The reengineering process is composed of
two steps:
a) A data reverse engineering process that extracts an

abstract description from the legacy system database
in order to know its structure and its behavior.
Changes can be applied to it in order to adapt the
systems to new requirements or to new technologies,
such as the change between the structured paradigm
and the OO paradigm. Our tool recovers a legacy
database obtaining the static component of an
equivalent OO conceptual schema using formal
methods.

b) A forward engineering process that generates the
software application (its structure in our case) based
on a specific technology from the abstract
description extracted from the legacy system. We
use the Rose Data Modeler add-in [13] of the
Rational Rose tool case to generate a new relational
schema from the OO conceptual schema.
Our tool also allows for data migration from the

legacy database to the recently generated one, keeping

the knowledge stored in the old database. The data
reverse engineering process and the data migration
process followed by our approach will reduce the time
invested and the number of people involved in the data
evolution process. This optimization is reached by the
automatic tasks that are performed by the tool in three
phases. Despite the fact that these tasks are performed
automatically, the results can be freely modified by the
analyst. In this case, the process is semi-automatic. The
tool performs the following three phases in order to
reach this goal:
a) A UML conceptual schema is obtained by applying

a data reverse engineering process in order to
recover a relational legacy database. Both relational
and UML conceptual schemas are represented as
terms of an algebra and the correspondences
between terms are specified using term rewriting
rules.

b) The rewriting rules applied in the first phase and the
patterns used by the Rose Data Modeler add-in to
generate the new relational schema are used to
describe a data migration plan which is specified
using a declarative language.

c) The data migration plan is compiled into DTS1
packages whose execution automatically migrates
data from the legacy database to the new one.
In the following sections, we present the three

phases in more detail, illustrating their application by
means of the example of the motivating scenario.

4.1. Reengineering Process

The input of this phase is a relational schema of a
legacy database and is the input to the main tool. This
phase generates two XML documents as output: one
representing the generated UML conceptual schema in
XMI format ([19]) and another one that contains the
rewriting rules applied to obtain the final UML
conceptual schema. In this phase the process that
produces these outputs follows three steps:
a) The reading of the relational schema of the legacy

database. The access to the relational schema is
performed by means of an API, named RSAO in
Figure. 3, in order to access heterogeneous
databases. The information that describes the legacy
relational schema is used to instantiate elements of
the relational schema at the M1-layer as a model.
This phase also considers features of the old DBMS
or other repository forms which do not allow for the

1 Data Transformation Services (DTS) is a technology
of SQL Server that allows the transfer of data among
heterogeneous databases.

definition of constraints (either integrity or reference
constraints). These constraints, implemented by
code in the best case scenario, are not explicitly
defined in the legacy database structure. Thus, user
interaction may be necessary to provide additional
information to obtain a complete relational
conceptual schema. This extra information is added
to the relational model obtained from the relational
database by means of a graphical interface that hides
the algebraic formalisms to the user.

Figure 3. MOMENT solution to the legacy system
recovering problem

b) Translation of the relational model into an UML

term by means of the model transformation
mechanism of the MOMENT Framework. Here the
user may decide to apply other rewriting rule than
the default rules chosen by the TRS in order to
generate a more semantically accurate UML term.
The applied rewriting rules in the translation process
are written down to a XML document that will be
used in the second phase.

c) The UML model obtained from the MOMENT
transformation is stored at the M1-layer of the
platform. It can be exported in an XMI document,
which can be imported in turn by most of the CASE
tools that manage UML diagrams, such as Rational
Rose. These CASE tools provide support to
manipulate a UML model and many other services
such as generate its code or its database. Although
the generation of the relational schema can be
treated as a model transformation issue in the
MOMENT platform, we also allow the
communication with other CASE tools by means of
XMI documents to benefit from their modeling
features.
In this section, we present the way in which the

MOMENT model transformation mechanism is applied
to generate a UML model from a relational schema,

providing formal support for generic model
transformation in the MDA context. First, we explain a
general overview of the transformation mechanism, and
later, we focus on the most formal phases of the
process.

4.1.1. Overview of the MOMENT model
transformation process

Transforming any model using the MOMENT

Framework constitutes a process that is detailed in
Figure. 4. To obtain the corresponding UML model
from the relational schema of the motivating example,
we perform the following steps:

Figure 4. Overview of the MOMENT model
transformation mechanism

− (1) and (2): We specify both relational and UML

metamodels, respectively, at the M2-layer of the
MOMENT platform using the operations of the
MOMENT algebra. Each one of the metamodels is a
schema made up of concepts, which describe the
main entities of the ontology, and by properties,
which describine the concepts by specifying values
and establishing relationships between them. These
algebraic specifications are performed through
visual wizards that are embedded in a specific
CASE tool to disguise the equational logic
formalism.

− (3): Mappings are specified between the concepts of
both metamodels at the M2-layer by means of a
script language, indicating semantic relationships.
There are two kinds of equivalence mappings that
can be expressed in this language:

Relational
Model

Relational
Model

UML
Model

UML
Model

Relational
Metamodel

Relational
Metamodel

UML
Metamodel

UML
Metamodel

Legacy
Database

Recovered
Database

DTS

M1-layer

M2-layer

MOMENT Platform

Rational
Rose

RSAO

XMI

DDL

MOMENT
Transformation

Mechanism

a) Simple mappings, which define a simple
correspondence between two concepts that
belong to different metamodels; for instance,
between a table and a class, or between a column
of a table and an attribute of a class.

b) Complex mappings, which define
correspondences between elements of a source
metamodel and a target metamodel. These
mappings relate two structures of concepts that
represent a similar semantic meaning. For
instance, to define an equivalence relationship
between a foreign key of the relational
metamodel and an association of the UML
metamodel, we have to relate the foreign key, the
unique constraint and the not null value
constraint concepts to the association concept.
This is because all three of these concepts of the
relational metamodel provide the necessary
knowledge to define an association between two
classes in the UML metamodel, such as the
cardinalities of the association.

− (4): The original relational schema is specified by
means of concepts and properties in a schema of the
M1-layer of the MOMENT platform. Both concepts
and properties are instances of the elements of the
relational metamodel defined in step 1.

− (5) and (6): Both relational and UML metamodels,
respectively, are compiled into algebraic theories by
means of the Theory Compiler module of the
Framework. The compilation uses the concepts to
define the sorts of the new theory and the properties
to define constructors and query operators. The
generated theories are interpreted by the CafeOBJ
TRS, providing the respective algebras to define
models in the TRS as algebraic terms.

− (7): The semantic mapping that is specified between
the concepts of both metamodels at the M2-layer is
also compiled into another theory that extends the
theories described above with a set of rewriting
rules. This theory indicates how to transform a
model of the source metamodel (relational
metamodel) into a new model of the target
metamodel (UML) in an automatic way.

− (8): The original relational schema, which is defined
in step (4) at the M1-layer of the MOMENT
platform, is compiled into a term of the relational
algebra in the CafeOBJ TRS by means of the Term
Manager module of the Framework.

− (9): The TRS evaluates the term that represents the
initial relational schema in the algebra obtained in
step (7). The user can manage this process through
the Evaluator module of the Framework. The
evaluation process can be carried in a step-by-step

mode or in only one step with the full-evaluation
mode, benefiting from the evaluation features of the
TRS. The TRS reduces the initial term by applying
the rewriting rules obtained in step (7), generating a
term of the target algebra.

− (10): This is the last step of the model
transformation process. It parses the obtained term
in step (9), defining a model in the M1-layer as an
instance of the target metamodel defined at the M2-
layer. There, it is disguised with the visual metaphor
associated to the target metamodel in the graphical
CASE tool.
Previously to the transformation process, the source

and target metamodels (step (1) and (2)), and the
semantic mappings between the elements of both
metamodels (step (3)) must be defined on the platform.
In the model transformation process, the user only
interacts with the MOMENT platform when defining
the initial model (step (4)). The other steps are
automatically carried out by the Framework, although
the user can participate in the evaluation process by
specifying the rewriting rules to be applied by the TRS
at each step of the term reduction.

In the following sections, we explain phases (5), (6),
(7), (8) and (9) in more detail, indicating how the TRS
is able to perform model transformations providing
formal support to the objectives of MDA.

4.1.2. Compilation of equational logic based theories

The relational and UML metamodels defined at the

M2-layer of the MOMENT platform are compiled into
theories based on equational logic in steps (5) and (6),
respectively. The compilation of MOMENT
metamodels into equational theories uses the concepts
of the metamodel to obtain the sorts of the theory; for
instance, the sorts Table, Field, ForeignKey for the
relational metamodel, as well as the identifiers for these
sorts, i.e., the sorts TableId, FieldId and ForeignKeyId.
The properties of a MOMENT metamodel provide
information about the structure of the term of a sort by
means of the cardinalities. Thus, when a concept A is
related to a concept B by means of a property that has
cardinality 1..1, the constructor of the sort A looks like
this: op a _ : B à A. Nevertheless, if the minimum
cardinality is zero or the maximum cardinality is many,
then the constructor for a term of the sort A looks like
this: op a _ : ListB à A, where ListB is a sort that
permits the definition of lists, whose items are terms of
sort B. As CafeOBJ belongs to the OBJ language
family, it permits equational specification through
several equational theories, such as associativity,
commutativity, identity, idempotence and combinations

between all these. This feature is reflected at the
execution level by term rewriting by means of such
equational theories.

Figure. 5 shows the constructors of the compiled
theory for the relational metamodel; and Figure. 6
shows the constructors for the UML metamodel. We
obviate the definition of sorts and other constructors in
the theory, as well as the definition of query operators,
focusing on the elements of the metamodels that permit
us to illustrate the example. We must point out that the
constructors obtained for the UML theory permit us to
define terms that represent UML-compliant models.

Figure 5. Part of the relational theory

Figure 6. Part of the UML theory

4.1.3. Compilation of rewriting logic-based theories

To transform the relational schema of the example,

semantic mappings have been defined between the
concepts of both source and target metamodels in step
(3). These mappings are compiled into an algebra that
extends both relational and UML algebras (steps (5)
and (6)) with a set of rewriting rules describing the
guidelines for the model transformation. These rules
are automatically applied by the TRS rewriting the
initial term into a term of the target algebra. The new

algebra constitutes the context where semantical
relationships between the source and target ontologies
are defined. To allow the transformation process, the
new algebra must relate the sorts of the initial algebra
(relational metamodel) to the sorts of the target algebra
(UML metamodel). Relationships between the sorts of
both algebras result in a subsort order that involves all
the sorts. For instance, in the example, the sort Table is
a subsort of the sort Class, indicating that a class can
take the place of a table that was there before. Subsort
relationships affect all the sorts of both algebras, even
identifiers and lists, because they are the related
concepts in the MOMENT algebra.

The properties that relate concepts in the MOMENT
algebra define a canonical order among the sorts of the
compiled algebras. This order is taken into account to
generate the rewriting rules. We present the rewriting
rules that are applied to the relational schema of the
example to obtain a semantically equivalent UML
model in CafeOBJ syntax:
a) Field

A field of a table becomes an attribute of a class
in the term that represents a UML model. The rule
reuses the features of the field (datatype, whether it
is null or not and whether it is primary key) to
generate an attribute. Field features also indicate the
attribute datatype, whether it is required or not and
whether it is the identifier of the class to which it
belongs:
op field _ _ _ _ _ _ : FieldId Datatype Bool Bool
TableId DatabaseId -> Attribute
eq field FI D NNV PK TI DBI = attribute FI D NNV
false PK TI DBI .

b) Foreign Key
A foreign key can define an association between

two classes in the UML context. The following rule
is applied when the foreign key is unique and not
null, obtaining an association 1..1 - 0..* between the
classes generated from the related tables.
op foreignKey _ _ _ _ _ _ : ForeignKeyId
ListAttribute TableId Bool TableId DatabaseId ->
ListClass
ceq foreignKey FkI LA RTI U TI DBI = (association
FkI TI RTI DBI) (associationEnd TI TI FkI true
unordered aggregate card 0 many frozen public
DBI) (associationEnd RTI RTI FkI true unordered
none card 1 card 1 frozen public DBI) if U and
isRequired (LA) .

c) Table
A table becomes a class. The rewriting rules must

take into account the fact that a table is made up of
fields and foreign keys, so that a field will become
an attribute of the new class and a foreign key will

-- ATTRIBUTE: id, type, required, constant, identifier, ClassId,
-- schemaid
op attribute _ _ _ _ _ _ _ : AttributeId Datatype Bool Bool Bool
ClassId
SchemaId -> Attribute {constr}
-- ASSOCIATION
op association _ _ _ _ : AssociationId AssociationEndId
AssociationEndId SchemaId -> Association {constr}
-- ASSOCIATIONEND: id, id of the class, id of the association,
-- isNavigable, ordering, aggregation, min card., max card,
-- changeability, visibility, id of the schema
op associationEnd _ _ _ _ _ _ _ _ _ _ _ : AssociationEndId
ClassId AssociationId Bool OrderingKind AggregationKind
Cardinality Cardinality ChangeableKind VisibleKind SchemaId ->
AssociationEnd {constr}
-- CLASS
op class _ _ _ : ClassId ListAttribute SchemaId -> Class {constr}
-- OOSCHEMA
op ooSchema _ _ : SchemaId ListClass -> OOSchema {constr}

-- FIELD: id, type, is nnv, is pk, tableid, dbid
op field _ _ _ _ _ _ : FieldId Datatype Bool Bool TableId
DatabaseId ->
Field {constr}
-- FOREIGNKEY: id, field list, related table, is unique, table that
-- contains the fk, database
op foreignKey _ _ _ _ _ _ : ForeignKeyId ListField TableId Bool
TableId DatabaseId -> ForeignKey {constr}
-- TABLE
op table _ _ _ _ : TableId ListField ListForeignKey DatabaseId ->
Table {constr}
-- DATABASE
op database _ _ : DatabaseId ListTable -> Database {constr}

become a set of elements of the UML model, i.e., an
association and two association ends, according to
the UML metamodel.
op table _ _ _ _ : TableId ListAttribute ListClass
DatabaseId -> ListClass
eq table TI LA nilForeignKey DBI = (class TI LA
DBI) .
eq table TI LA LC DBI = (class TI LA DBI) LC .

d) Database
Finally, a database is rewritten into a term of the

sort OOSchema, representing the target UML
model, by means of the following rule:
op database _ _ : DatabaseId ListClass ->
OOSchema
eq database DBI LC = ooSchema DBI LC .

Figure 7. Original term representing the source
relational schema (7.a), and the generated term

representing the target UML model (7.b).

4.1.4. Term rewriting process

Step (8) compiles the relational schema defined in

the M1-layer of the MOMENT platform, obtaining the
algebraic term in Figure. 7.a. The TRS applies the
rewriting rules specified above to this initial term,
obtaining a term of the target algebra (UML), shown in
Figure. 7.b. This term is parsed and is defined as a

UML model in the M1-layer of the MOMENT
platform. There, it is automatically related to graphical
pictures in a specific CASE tool.

During the term rewriting process, some additional
information could be required in order to perform a
correct transformation, as the metamodels do not have
the same expressive power. For instance when a
transformation case has not been taken into account or
when several rewriting rules can be applied to the
source model. In these cases a visual wizard helps the
user to chose one option or even to add a new
transformation rule, providing a visual interface for the
CafeOBJ interpreter.

To benefit from the MOMENT features, we have
integrated the functionality of the MOMENT
Framework into a visual modeling environment [14]. In
this way, we can relate algebraic specifications to
visual notations so that the user can use these graphics
to build a model. The CASE tool we have chosen is
MS Visio [15]. We have developed an add-in that
permits the definition of metamodels with concepts and
properties. Figure. 8 shows the interface that permits
the definition of the graphical symbol of a class in the
MOMENT platform.

Figure 8. Visual interface to define a graphical

primitive algebraically

In visual CASE tools, models are usually defined by

dropping graphical primitives on a sheet where the
model is defined. By means of the developed add-in,
dropping a primitive on the sheet does not only add a
figure to the model but it also defines it algebraically,
specifying the model so that it can be manipulated
afterwards.

5. Relational Migration Plan Generator

This phase generates a migration plan that specifies

what information must be copied from the legacy
database to the database of the new OO application. Its

database 'InvoiceRS'
((table 'Invoice'

((field 'code' integer true true 'Invoice' 'InvoiceRS')
(field 'date' datetime false false 'Invoice' 'InvoiceRS'))

nilForeignKey
'InvoiceRS')

(table 'InvoiceLine'
((field 'code' integer true true 'InvoiceLine' 'InvoiceRS')

(field 'number' integer true true 'InvoiceLine' 'InvoiceRS')
(field 'description' string false false 'InvoiceLine' 'InvoiceRS')
(field 'date' datetime true false 'InvoiceLine' 'InvoiceRS')
(field 'hours' decimal true false 'InvoiceLine' 'InvoiceRS'))

((foreignKey 'FK-InvoiceLine-Invoice'
((field 'code' integer true true 'InvoiceLine' 'InvoiceRS'))
'Invoice‘ true 'InvoiceLine‘ 'InvoiceRS'))

'InvoiceRS'))

OOSchema 'InvoiceRS'
((class 'Invoice'

((attribute 'code' integer true false true 'Invoice' 'InvoiceRS')
(attribute 'date' datetime false false false 'Invoice‘ 'InvoiceRS'))

'InvoiceRS‘)
(class 'InvoiceLine'

((attribute 'code' integer true false true 'InvoiceLine' 'InvoiceRS')
(attribute 'number' integer true false true 'InvoiceLine' 'InvoiceRS')
(attribute 'description' string false false false 'InvoiceLine' 'InvoiceRS')
(attribute 'date' datetime true false false 'InvoiceLine' 'InvoiceRS')
(attribute 'hours' decimal true false false 'InvoiceLine' 'InvoiceRS'))

'InvoiceRS‘)
(association 'FK-InvoiceLine-Invoice' 'a' 'b' 'InvoiceRS')
(associationEnd 'a' 'InvoiceLine' 'FK-InvoiceLine-Invoice' 'InvoiceRS')
(associationEnd 'a' 'Invoice' 'FK-InvoiceLine-Invoice' 'InvoiceRS'))

Relational Schema (a)

UML Model (b)

inputs are two XML documents that contain the
mappings:
− between elements of the legacy relational schema

and elements of the recently generated OO
conceptual schema.

− between elements of this OO conceptual schema and
elements of the new relational schema generated by
the Rose Data Modeler add-in.
The migration plan generator applies a set of

patterns to the input correspondences and produces a
migration plan that is specified using a relational
declarative language indicating what information has to
be copied from the legacy database to the new one. The
use of a declarative language provides independence
from the specific DBMSs used for supporting the
databases. Additionally, this phase checks the
constraints of the target database in order to avoid
constraint violation.

5.1. Relational Migration Plan

A relational migration plan specifies the actions that

must be performed in order to copy data from the
legacy database to the new database, generated from
the recovered OO conceptual schema. The migration
plan consists of a set of migration modules. There
exists one migration module for each specific table of
the target database. Therefore, a migration module
assigns a view over the legacy database to a target table
indicating where to find the source data.

To specify the data copy process, a migration
module contains a set of mappings between columns of
the source view and the target table. Those mappings
constitute the migration expressions that can be used in
a migration plan and they are specified by means of the
relational declarative language.

The automatic generation of the migration plan
considers its structure and its contents. Thus, two kinds
of patterns are used: migration patterns and migration
expression patterns. Migration patterns generate the
structure of the migration plan following the ordering
of the tables of the new database. Migration expression
patterns generate their content by means of migration
expressions that represent mappings between columns
of the relational tables.

The migration plan generator gets the applied
rewriting rules of the reengineering process from the
two input XML documents, one from the data reverse
engineering phase and another one from the Rose Data
Modeler. These rules provide enough information to
determine how many migration modules are needed
and which tables of the legacy database form the source
view for each module. Thus, the generator constructs

the migration modules by applying the migration
patterns. Then, it applies the migration expression
patterns in order to link attributes of the source view
with attributes of the target table in each migration
module, reflecting the generation process followed to
obtain the target database. Once the migration plan is
finished, the generator writes it in an XML document,
ready to be compiled into a specific technology in
order to perform the data migration.

6. Migration Plan compiler

This phase performs the compilation of the

migration plan to a specific technology and its
execution in order to carry out the physical data
migration. We use the Data Transformation Services
(DTS) of Microsoft SQL Server. This tool allows data
migration between heterogeneous relational DBMS by
applying data transformation services in order to fulfill
target database requirements.

The compiler receives an XML document that
describes the migration plan from the second phase of
RELS and obtains a set of DTS packages that are able
to perform the specified migration plan between the
legacy database and the new one.

7. Related works

The MétaGen project [16] has dealt with model
engineering since 1991, aiming at a fully automatic
generation of a conventional application from a
description given by its intended user. Such a
description is performed by means of PIR3, a variant of
what is known in the Database community as Entity-
Relationship Model. In [17], Revault et al. compared
three metamodeling formalisms to share the experience
they acquired during the MétaGen project. In that
paper, they presented a way to transform MOF-based
metamodels into PIR3-based metamodels so that the
metamodels could benefit from the MétaGen tools.
This proposal constrains the expressivity of the source
metamodels because the Object-Oriented paradigm is
richer than the Entity-Relationship paradigm. Our
model management approach supports the definition of
several metamodeling languages such as MOF or PIR3,
considering them as models at the same abstraction
level and using generic operators. This makes
automated transformations between models of both
metamodels possible, without loss of expressivity.

XML [18], the standard for data communication
between applications is also used to represent models
and metamodels by means of the XMI specification
[19]. MOF defines a meta-metamodel, while XMI

indicates the physical representation for the
metamodels and the models that can be defined with it.
In the model transformation field, there is a XML
specification that allows the transformation of a XML
document into another one, called XSLT [20]. It could
be used to transform models that are represented in the
XML format. Comparing XSLT to term rewriting
systems, there are some differences that should be
pointed out:
− Although XSLT is said to be a declarative language,

control instructions, such as jumps and loops, can be
used to guide the transformation process. In
contrast, a term rewriting system takes over the
transformation rule evaluation process.

− Writing an XSLT program is a long and painful
process which implies poor readability and high
maintenance cost for associated programs. Also,
writing an XSLT program requires good skills in the
MOF and XMI specification, because when using
XPATH and XSLT, the developer must take into
account the structure of models which depends on
metamodels. These metamodels are in turn widely
influenced by MOF and XMI. By expressing
metamodels as algebras, we can deal with a more
specific syntax that reflects their semantics using the
algebras as domain specific languages. Therefore,
writing models (and consequently transformation
rules) becomes easier and more comprehensible.

− Transformation rules in XSLT are applied without
taking into account the target XML schema
(metamodel when transforming models), implying a
posterior checking to determine whether the
obtained document is a valid XML document that
conforms to the target schema. Rewriting rules in an
algebra take into account the source and the target
algebras so that a posterior checking is no longer
needed.

− Executing an XSLT program is not user-friendly for
model transformation because there are no error
messages to advise the user about an incorrect
transformation.
The MTRANS Framework [21] provides an abstract

language to define transformation rules that are
compiled to XSLT. Even though this language is more
compact and easier to understand than XSLT, it still
keeps instructions to manage the transformation rules
evaluation. Nevertheless, transformations using XML
technology imply the use of standard specifications that
are industrially supported while term rewriting systems
usually remain within the field of research.

8. Conclusions

Nowadays, software applications have become
complex combinations of technology, which have to be
well understood in order to manage them. The
development of software artifacts involves models that
can be mixed with others to obtain an entire system
from partial views or that can be interconnected with
others in order to guarantee both interoperability in a
distributed environment and their implementations.

MDA raises the level of abstraction in the software
development process by treating models as primary
artifacts. MDA potentially covers the modeling of all
aspects of a system throughout its life cycle, making
software development processes easier and more
automated.

The MOMENT (MOdel manageMENT) platform
follows this trend by providing a framework where
models can be represented using an algebraic approach.
The MOMENT Framework benefits from the best
features of current visual CASE tools and from the
main advantages of formal environments such as term
rewriting systems, combining both industrial and
research features.

In this paper, we have presented the generic model
transformation mechanism provided by the MOMENT
Framework, focusing on the use of the CafeOBJ Term
Rewriting System to perform automatic translations of
models. This mechanism has been applied to legacy
relational database recovering in the MDA context,
obtaining a UML model from a relational schema. The
functionality of TRSs permits us to deal with model
transformation from a more abstract point of view,
since the application of rewriting rules can be
performed in a transparent way. This fact allows us to
focus all the efforts on the specification of models
without having to take the evaluation logic into
account. Our approach constitutes an algebraic baseline
to cope with the future model transformation language
QVT, providing a user-friendly environment to
manipulate models from a visual CASE tool [14]. In
[22], we present the fundamental mainstay on which we
have built our MOMENT platform taking into account
our previous experience in the industrial project RELS,
a tool for the recovery of legacy systems.

Currently, we are working with transformations
between relational schemas and UML models. In the
near future, we will also take into account software
architecture specifications by means of PRISMA ADL
[23], studying semantic interoperability between
software architectures and other types of software
artifacts represented through UML models.

9. Acknowledgments

This work was supported by the Spanish
Government under the National Program for Research,
Development and Innovation, DYNAMICA Project
TIC 2003-07804-C05-01.

10. References

[1] Ward, M.P., and Bennett, K.H., “Formal Methods to Aid
the Evolution of Software”; Journal of Software
Maintenance: Research and Practice, Vol 7, no 3, May-June
1995, pp 203-219.

[2] OMG, “The Model-Driven Architecture, Guide Version
1.0.1”, OMG Document: omg/2003-06-01. Available from
www.omg.org

[3] OMG, “Meta Object Facility 1.4”, OMG Document:
formal/02-04-03. Available from www.omg.org

[4] OMG, “MOF 2.0 Query/Views/Transformations RFP”,
OMG Document ad/2002-04-10. Available from
www.omg.org

[5] Hainaut, J. L., Henrard, J., Roland, D., Englebert, V., and
Hick, J.M., “Structure Elicitation in Database Reverse
Engineering”, WCRE’96 3 (1996), 131-140.

[6] Premerlani, W.J., and Blaha, M.: “An approach for
reverse engineering of relational databases”;
Communications of the ACM 37,5 (1994), 42-49.

[7] Ramanathan, S., and Hodges, J.: “Reverse Engineering
Relational Schemas to Object-Oriented Schemas”; Technical
Report MSU-960701, Mississippi State University,
Mississippi, 1996.

[8] ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation
X.901, X.902, X.903, X.904, “Open Distributed Processing
– Reference Model”. OMG, 1995-96.

[9] CDIF Technical Committee, “CDIF Framework for
Modeling and Extensibility”, Electronic Industries
Association, EIA/IS-107, January 1994. See
http://www.cdif.org/

[10] Razvan Diaconescu, and Kokichi Futatsugi, “An
overview of CafeOBJ”, Electronic Notes in Theoretical
Computer Science vol. 15: (2000)

[11] Microsoft Research (Don Syme), “The F# official web
site”: http://research.microsoft.com/projects/ilx/fsharp.aspx

[12] N. Martí-Oliet and J. Meseguer, Rewriting logic:
roadmap and bibliography, Theoretical Computer Science,
vol. 285, issue 2 (August 2002), pp. 121-154.

[13] Boggs, W., Boggs, M.: “Mastering UML with Rational
Rose 2002”; Sybex. January 2002.

[14] A. Boronat, J. Á. Carsí, I. Ramos, “An Architecture for
the Definition of Graphic Metaphors for Metamodels”,
Software Engineering and Databases Workshop (Jornadas de
Ingeniería del Software y Bases de Datos, JISBD 2004).
Málaga, 10-12 November 2004 (in Spanish).

[15] Graham Wideman, “Microsoft Visio 2003 Developer's
Survival Pack”, Trafford, 2004.

[16] N. Revault, H.A. Sahraoui, G. Blain and J.F. Perrot, A
Metamodeling technique: “The MÉTAGEN system”,
TOOLS 16: TOOLS Europe'95, Prentice Hall, pp. 127-139.
Versailles, France. Mar. 1995.

[17] N. Revault, X. Blanc and J. F. Perrot, “On Meta-
Modeling Formalisms and Rule-Based Model Transforms”,
Comm. at workshop, In Iwme'00 workshop at Ecoop'00, Jean
Bézivin and Johannes Ernst (ed), Sophia Antipolis and
Cannes, France, June, 2000.

[18] Elliotte Rusty Harold, “XML Bible”, IDG Books
Worldwide, 1999.

[19] OMG, XML Metadata Interchange (XMI) Specification,
OMG Document formal/02-01-01.

[20] W3C, XSL Transformations (XSLT) v1.0. W3C
Recommendation, http://www.w3.org/TR/xslt, Nov. 1999.

[21] M. Peltier, J. Bézivin, and G. Guillaume, “MTRANS: A
general framework, based on XSLT, for model
transformations”. In WTUML’01, Proceedsings of the
Workshop on Transformations in UML, Genova, Italy, Apr.
2001.

[22] A. Boronat, J. Pérez, J. Á. Carsí, and I. Ramos, “Two
experiencies in software dynamics”. Journal of Universal
Science Computer. Special issue on Breakthroughs and
Challenges in Software Engineering. April 2004.

[23] J. Pérez, I. Ramos , J. Jaén, P. Letelier, E. Navarro,
“PRISMA: Towards Quality, Aspect Oriented and Dynamic
Software Architectures”, 3rd IEEE International Conference
on Quality Software (QSIC 2003), Dallas, Texas, USA,
November 6 - 7, 2003 © IEEE Computer Society Press pp.
59-66.

