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Abstract 

 
Legacy systems are information systems that have 

been developed by means of methods, tools and 
database management systems that have become 
obsolete, but they are still being used due to their 
reliability. As time goes on, the maintenance of this 
software becomes more complex, expensive and 
painful. The OMG’s MDA initiative provides some 
guides to develop software that raise models and 
transformations between them as first class citizens. 
This point of view provides a precise way to develop a 
new application from the legacy one. The MOMENT 
Framework supports automatic formal model 
transformations in MDA. This model transformation 
approach is based on the algebraic specification of 
models and benefits from mature term rewriting system 
technology to perform model transformation using 
rewriting logic. In this paper, we present how we apply 
this formal transformation mechanism to recover a 
legacy relational database, obtaining a UML-based 
application. This approach keeps the legacy knowledge 
by pumping the legacy data to the new database 
generated from the UML model. Our approach 
enhances the integration between formal environments 
and industrial technologies such as .NET technology, 
and exploits the best features of both. 
 
1. Introduction 
 

Legacy systems can be defined informally as 
“software we do not know what to do with, but it is still 
performing a useful job” [1]. They are information 
systems that have been developed by means of 
methods, tools and database management systems that 
have become obsolete, but they are still being used due 

to their reliability. They are characterized by the 
following features: 
− Software architecture based on obsolete technology 

that has probably been patched in order to adapt to 
new changes in requirements. This fact complicates 
the maintenance of the application. 

− Poor, complex documentation that prevents 
effective maintenance or software updating, making 
it necessary to check the source code to understand 
the functionality of the system. 

− Cumulative experience working with the system that 
has filled its database with information that is 
significant for the company.  
As in all complex systems with a medium life cycle, 

the requirements for this kind of applications go on 
changing at the same rate as technology does. There are 
two main approaches to performing changes in these 
systems. On the one hand, there is the patching of the 
legacy system that has obsolete technology code. The 
disadvantages to this approach are that the technology 
does not consider new features to improve either code 
reuse, quality or documentation generation, and that the 
staff that will develop the new part of the system needs 
to be trained. On the other hand, the whole system can 
be developed with a new technology taking advantage 
of all its features. Both approaches imply a high cost, 
but we prefer the second option because the first one 
only temporarily delays the translation into a new 
technology, making maintenance harder and harder 
each time the system is changed. 

The OMG's Model Driven Architecture (MDA) 
initiative [2] is set in this context and provides several 
proposals to define models, through the standard Meta-
Object Facility (MOF) [3]. It also offers proposals to 
perform model transformations by means of the 
Query/View/Transformations (QVT) language, which 
is still in its early stages [4]. While a lot of attention 
has been given to the transformation of platform-



independent models into platform-specific models, the 
scope of MDA goes beyond this in an attempt to model 
all the features of a software product throughout its life 
cycle. Nonetheless, a precise technique to provide 
formal support for the entire process of model 
transformation has not yet been developed. 

The MOMENT (MOdel manageMENT) platform 
follows this trend by providing a framework where 
models can be represented using an algebraic approach. 
MOMENT is based on an algebra that is made up of 
sorts and operators that permit the representation of 
any model as a term that can be automatically 
manipulated by means of operators. The MOMENT 
Framework benefits from the best features of current 
visual CASE tools and the main advantages of formal 
environments such as term rewriting systems, 
combining the best of both industry and research. 

This paper presents the application of the 
MOMENT framework to a reengineering problem 
where a UML model is obtained from a legacy 
relational database by means of the MOMENT model 
transformation, which relies on a term rewriting 
system.  

The paper is structured as follows: Section 2 
indicates an example to illustrate the transformation 
process through the paper; Section 3 provides an 
overview of the MOMENT Framework; Section 4 
presents the model transformation mechanism of the 
MOMENT Framework, focusing on the use of a Term 
Rewriting System (TRS) as a formal environment to 
perform automatic model transformations; Section 5 
presents other approaches to provide automatic support 
for model transformations. Finally, Section 6 
summarizes the work and indicates the future directions 
of our research tasks. 

  
2. Example of a Common Legacy System 
Recovering Process 
 

Consider a car maintenance company that has 
worked for a long time for a large car dealership. The 
maintenance company works with an old C application 
where the information is stored in a simple relational 
database that does not even consider integrity 
constraints. The car dealership has recently acquired 
the car maintenance company and its president has 
decided to migrate the old application to a new OO 
technology in order to improve maintenance and 
efficiency. Therefore, the target application will be 
developed by means of an OO programming language 
although the database layer remains a relational 
database. This time, new integrity constraints are 

provided in the new relational database in order to 
improve maintainability. 

Consider the part of the legacy system that stores 
information about invoices in the example. Each 
invoice contains data about the task performed in a 
specific period of time and at a specific price. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Legacy Database Recovering Example 
 
To recover the legacy system, a designer has to 

build a semantically equivalent OO conceptual schema 
that captures the semantics that is disorganized in the 
legacy system. This task is usually done manually and 
involves high development costs. What is worse is that 
the human factor does not guarantee an error-free 
process to obtain a correct OO conceptual schema. 
Step (1) constitutes a manual, reverse-engineering 
process where the designer detects that the legacy table 
can be broken down into two classes: one containing 
the information about a performed task during a period 
of time and another one representing the collection of 
performed tasks for a specific customer, i.e., the 
InvoiceLine class and the Invoice class. In this step, 
works like those by [5], [6] and [7] can be applied to 
obtain OO models from relational schemas. 

Once the OO model is complete, the relational 
database has to be generated (2). Here the designer can 
use many CASE tools such as Rational Rose, Together 
or System Architect in order to generate the new 
relational schema automatically. Despite obtaining a 
relational schema, these tools do not take into account 
legacy data.  

The cumulative experience of the maintenance 
company is collected in its database and, it is expected 
to be preserved in the new database (3). Several DBMS 
allow for data migration using their ETL (Extract, 
Transform & Load) tools. This migration can be done 



by means of SQL statements or user defined scripts 
which can be executed on the database. Although ETL 
tools provide friendly interfaces to migrate data 
between databases, DB administrators must write 
migration code manually, and this is very costly in 
terms of people and time. 

In next sections, we explain the MOMENT 
Framework and the way in which its application 
provides a more efficient solution to this reengineering 
problem. 

 
3. The MOMENT Framework 
 

The MOMENT (MOment manageMENT) 
Framework is a modular architecture divided into the 
three traditional layers: interface, functionality and 
persistence. In each one of them, the environment 
benefits from mature tools, such as graphical CASE 
tools at the interface layer, term rewriting systems at 
the functionality layer, and RDF repositories at the 
persistence layer. Hence, the MOMENT Framework 
aims at using the best features of each environment, 
bringing industrial modeling tools closer to more 
formal systems. Figure. 2 shows an overview of the 
MOMENT Framework.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The MOMENT Framework 
 
The functionality layer permits the representation of 

models and the performance of transformations over 
them. The core of the functionality layer is a module 
called MOMENT Theory, which allows model 
representation and manipulation by means of an 
algebraic approach. We use the expressiveness of the 
algebra that the platform is based on to define and 
represent a model as an algebraic term. This algebra 

represents models by means of terms of a sort called 
Schema. These terms are made up of by concepts and 
properties. The concepts are the main entities of a 
model, and the properties either describe them with 
values or establish relationships between them. The 
properties contain information about cardinality, 
indicating how many concepts can be related to the 
owner of the property.   

The MOMENT platform uses several metadata 
layers to describe any kind of information including 
new metadata types. This architecture is based on both 
the classical four-layer metamodeling architecture 
(following standards such as ISO [8] and CDIF [9]) 
and on the more modern four-layer framework 
proposed in the MOF specification [3]. In our work, we 
divide the platform into four abstract layers: 
− The M0-layer collects the examples of all the 

models, i.e., it holds the information that is 
described by a data model of the M1-layer. 

− The M1-layer contains the metadata that describes 
data in the M0-layer and aggregates it by means of 
models. This layer provides services to collect 
examples of a reality in the lowest layer. 

− The M2-layer contains the descriptions (meta-
metadata) that define the structure and semantics of 
the metadata located at the M1-layer. This layer 
groups meta-metadata as metamodels.  A 
metamodel is an "abstract language" that describes 
different kinds of data. The M2-layer provides 
services to manage models in the next lower layer. 

− The M3-layer is the platform core, containing 
services to specify any metamodel with the same 
common representation mechanism. It is the most 
abstract layer in the platform. It contains the 
description of the structure and the semantics of the 
meta-metadata, which is located at the M2-layer. 
This layer provides the "abstract language" to define 
different kinds of metadata.  
The MOMENT Theory module also provides a 

mechanism to define transformations between 
metamodels. The TRS Manager module wraps a TRS, 
which carries out the model transformation by applying 
a set of rewriting rules automatically. We have used the 
CafeOBJ environment as TRS [10]. The Theory 
Compiler module permits the compilation of the 
algebraic specification of a metamodel into a theory 
based on equational logic. It also compiles the defined 
mappings between the elements of the metamodels into 
a theory based on rewriting logic in order to perform 
the model transformation on the wrapped TRS.  Some 
of these modules have been developed using the 
functional language F# [11], which provides 
convenient features to work with algebraic 
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specifications and with imperative programming 
environments such as .NET technology. A combination 
of functional languages and algebraic specification 
languages has permitted us to reach our goals. On the 
one hand, the MOMENT algebra is implemented in F#, 
which provides efficient structures for navigation and 
specification manipulation. On the other hand, a TRS 
provides a suitable environment to support automatic 
model transformation. 

 
4. Legacy Systems Recovery Process in 
MOMENT 

 
MDA raises the level of abstraction in the software 

development process by treating models as primary 
artifacts. Models are defined using modeling 
languages, but when those languages are intended to be 
used for anything more sophisticated than drawing 
pictures, both their syntax and their semantics must be 
specified. In this case, the use of formal languages 
usually involves dealing with their complex syntax, 
making them unpopular in industry. In this sense, the 
MOMENT Framework is user-friendly and permits the 
use of formal techniques from well-known CASE tools 
to both define models by means of algebraic 
specifications and to perform model transformations 
using rewriting logic [12]. 

Rebuilding a legacy system into a semantically 
equivalent one with a new technology can be treated as 
a model transformation problem in the MDA context. 
Our tool provides a generic model transformation 
mechanism that has been applied to recover legacy 
databases. The reengineering process is composed of 
two steps: 
a) A data reverse engineering process that extracts an 

abstract description from the legacy system database 
in order to know its structure and its behavior. 
Changes can be applied to it in order to adapt the 
systems to new requirements or to new technologies, 
such as the change between the structured paradigm 
and the OO paradigm. Our tool recovers a legacy 
database obtaining the static component of an 
equivalent OO conceptual schema using formal 
methods. 

b) A forward engineering process that generates the 
software application (its structure in our case) based 
on a specific technology from the abstract 
description extracted from the legacy system. We 
use the Rose Data Modeler add-in [13] of the 
Rational Rose tool case to generate a new relational 
schema from the OO conceptual schema. 
Our tool also allows for data migration from the 

legacy database to the recently generated one, keeping 

the knowledge stored in the old database. The data 
reverse engineering process and the data migration 
process followed by our approach will reduce the time 
invested and the number of people involved in the data 
evolution process. This optimization is reached by the 
automatic tasks that are performed by the tool in three 
phases. Despite the fact that these tasks are performed 
automatically, the results can be freely modified by the 
analyst. In this case, the process is semi-automatic. The 
tool performs the following three phases in order to 
reach this goal: 
a) A UML conceptual schema is obtained by applying 

a data reverse engineering process in order to 
recover a relational legacy database. Both relational 
and UML conceptual schemas are represented as 
terms of an algebra and the correspondences 
between terms are specified using term rewriting 
rules. 

b) The rewriting rules applied in the first phase and the 
patterns used by the Rose Data Modeler add-in to 
generate the new relational schema are used to 
describe a data migration plan which is specified 
using a declarative language. 

c) The data migration plan is compiled into DTS1 
packages whose execution automatically migrates 
data from the legacy database to the new one. 
In the following sections, we present the three 

phases in more detail, illustrating their application by 
means of the example of the motivating scenario. 
 
4.1. Reengineering Process 

 
The input of this phase is a relational schema of a 
legacy database and is the input to the main tool. This 
phase generates two XML documents as output: one 
representing the generated UML conceptual schema in 
XMI format ([19]) and another one that contains the 
rewriting rules applied to obtain the final UML 
conceptual schema. In this phase the process that 
produces these outputs follows three steps: 
a) The reading of the relational schema of the legacy 

database. The access to the relational schema is 
performed by means of an API, named RSAO in 
Figure. 3, in order to access heterogeneous 
databases. The information that describes the legacy 
relational schema is used to instantiate elements of 
the relational schema at the M1-layer as a model. 
This phase also considers features of the old DBMS 
or other repository forms which do not allow for the 

                                                           
1 Data Transformation Services (DTS) is a technology 
of SQL Server that allows the transfer of data among 
heterogeneous databases. 



definition of constraints (either integrity or reference 
constraints). These constraints, implemented by 
code in the best case scenario, are not explicitly 
defined in the legacy database structure. Thus, user 
interaction may be necessary to provide additional 
information to obtain a complete relational 
conceptual schema. This extra information is added 
to the relational model obtained from the relational 
database by means of a graphical interface that hides 
the algebraic formalisms to the user. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. MOMENT solution to the legacy system 
recovering problem 

 
b) Translation of the relational model into an UML 

term by means of the model transformation 
mechanism of the MOMENT Framework. Here the 
user may decide to apply other rewriting rule than 
the default rules chosen by the TRS in order to 
generate a more semantically accurate UML term. 
The applied rewriting rules in the translation process 
are written down to a XML document that will be 
used in the second phase. 

c) The UML model obtained from the MOMENT 
transformation is stored at the M1-layer of the 
platform. It can be exported in an XMI document, 
which can be imported in turn by most of the CASE 
tools that manage UML diagrams, such as Rational 
Rose. These CASE tools provide support to 
manipulate a UML model and many other services 
such as generate its code or its database. Although 
the generation of the relational schema can be 
treated as a model transformation issue in the 
MOMENT platform, we also allow the 
communication with other CASE tools by means of 
XMI documents to benefit from their modeling 
features. 
In this section, we present the way in which the 

MOMENT model transformation mechanism is applied 
to generate a UML model from a relational schema, 

providing formal support for generic model 
transformation in the MDA context. First, we explain a 
general overview of the transformation mechanism, and 
later, we focus on the most formal phases of the 
process.  

 
4.1.1. Overview of the MOMENT model 
transformation process 

 
Transforming any model using the MOMENT 

Framework constitutes a process that is detailed in 
Figure. 4. To obtain the corresponding UML model 
from the relational schema of the motivating example, 
we perform the following steps: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Overview of the MOMENT model 
transformation mechanism 

 
− (1) and (2): We specify both relational and UML 

metamodels, respectively, at the M2-layer of the 
MOMENT platform using the operations of the 
MOMENT algebra. Each one of the metamodels is a 
schema made up of concepts, which describe the 
main entities of the ontology, and by properties, 
which describine the concepts by specifying values 
and establishing relationships between them. These 
algebraic specifications are performed through 
visual wizards that are embedded in a specific 
CASE tool to disguise the equational logic 
formalism. 

− (3): Mappings are specified between the concepts of 
both metamodels at the M2-layer by means of a 
script language, indicating semantic relationships. 
There are two kinds of equivalence mappings that 
can be expressed in this language:  
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a) Simple mappings, which define a simple 
correspondence between two concepts that 
belong to different metamodels; for instance, 
between a table and a class, or between a column 
of a table and an attribute of a class.    

b) Complex mappings, which define 
correspondences between elements of a source 
metamodel and a target metamodel. These 
mappings relate two structures of concepts that 
represent a similar semantic meaning. For 
instance, to define an equivalence relationship 
between a foreign key of the relational 
metamodel and an association of the UML 
metamodel, we have to relate the foreign key, the 
unique constraint and the not null value 
constraint concepts to the association concept. 
This is because all three of these concepts of the 
relational metamodel provide the necessary 
knowledge to define an association between two 
classes in the UML metamodel, such as the 
cardinalities of the association.  

− (4): The original relational schema is specified by 
means of concepts and properties in a schema of the 
M1-layer of the MOMENT platform. Both concepts 
and properties are instances of the elements of the 
relational metamodel defined in step 1.     

− (5) and (6): Both relational and UML metamodels, 
respectively, are compiled into algebraic theories by 
means of the Theory Compiler module of the 
Framework. The compilation uses the concepts to 
define the sorts of the new theory and the properties 
to define constructors and query operators. The 
generated theories are interpreted by the CafeOBJ 
TRS, providing the respective algebras to define 
models in the TRS as algebraic terms. 

− (7): The semantic mapping that is specified between 
the concepts of both metamodels at the M2-layer is 
also compiled into another theory that extends the 
theories described above with a set of rewriting 
rules. This theory indicates how to transform a 
model of the source metamodel (relational 
metamodel) into a new model of the target 
metamodel (UML) in an automatic way. 

− (8): The original relational schema, which is defined 
in step (4) at the M1-layer of the MOMENT 
platform, is compiled into a term of the relational 
algebra in the CafeOBJ TRS by means of the Term 
Manager module of the Framework. 

− (9): The TRS evaluates the term that represents the 
initial relational schema in the algebra obtained in 
step (7). The user can manage this process through 
the Evaluator module of the Framework. The 
evaluation process can be carried in a step-by-step 

mode or in only one step with the full-evaluation 
mode, benefiting from the evaluation features of the 
TRS. The TRS reduces the initial term by applying 
the rewriting rules obtained in step (7), generating a 
term of the target algebra. 

− (10): This is the last step of the model 
transformation process. It parses the obtained term 
in step (9), defining a model in the M1-layer as an 
instance of the target metamodel defined at the M2-
layer. There, it is disguised with the visual metaphor 
associated to the target metamodel in the graphical 
CASE tool. 
Previously to the transformation process, the source 

and target metamodels (step (1) and (2)), and the 
semantic mappings between the elements of both 
metamodels (step (3)) must be defined on the platform. 
In the model transformation process, the user only 
interacts with the MOMENT platform when defining 
the initial model (step (4)). The other steps are 
automatically carried out by the Framework, although 
the user can participate in the evaluation process by 
specifying the rewriting rules to be applied by the TRS 
at each step of the term reduction.   

In the following sections, we explain phases (5), (6), 
(7), (8) and (9) in more detail, indicating how the TRS 
is able to perform model transformations providing 
formal support to the objectives of MDA.   

 
4.1.2. Compilation of equational logic based theories 

 
The relational and UML metamodels defined at the 

M2-layer of the MOMENT platform are compiled into 
theories based on equational logic in steps (5) and (6), 
respectively. The compilation of MOMENT 
metamodels into equational theories uses the concepts 
of the metamodel to obtain the sorts of the theory; for 
instance, the sorts Table, Field, ForeignKey for the 
relational metamodel, as well as the identifiers for these 
sorts, i.e., the sorts TableId, FieldId and ForeignKeyId. 
The properties of a MOMENT metamodel provide 
information about the structure of the term of a sort by 
means of the cardinalities. Thus, when a concept A is 
related to a concept B by means of a property that has 
cardinality 1..1, the constructor of the sort A looks like 
this: op a _ : B à A. Nevertheless, if the minimum 
cardinality is zero or the maximum cardinality is many, 
then the constructor for a term of the sort A looks like 
this: op a _ : ListB à A, where ListB is a sort that 
permits the definition of lists, whose items are terms of 
sort B. As CafeOBJ belongs to the OBJ language 
family, it permits equational specification through 
several equational theories, such as associativity, 
commutativity, identity, idempotence and combinations 



between all these. This feature is reflected at the 
execution level by term rewriting by means of such 
equational theories.   

Figure. 5 shows the constructors of the compiled 
theory for the relational metamodel; and Figure. 6 
shows the constructors for the UML metamodel. We 
obviate the definition of sorts and other constructors in 
the theory, as well as the definition of query operators, 
focusing on the elements of the metamodels that permit 
us to illustrate the example. We must point out that the 
constructors obtained for the UML theory permit us to 
define terms that represent UML-compliant models.   

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Part of the relational theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Part of the UML theory 
 
 

4.1.3. Compilation of rewriting logic-based theories 
 
To transform the relational schema of the example, 

semantic mappings have been defined between the 
concepts of both source and target metamodels in step 
(3). These mappings are compiled into an algebra that 
extends both relational and UML algebras (steps (5) 
and (6)) with a set of rewriting rules describing the 
guidelines for the model transformation. These rules 
are automatically applied by the TRS rewriting the 
initial term into a term of the target algebra. The new 

algebra constitutes the context where semantical 
relationships between the source and target ontologies 
are defined. To allow the transformation process, the 
new algebra must relate the sorts of the initial algebra 
(relational metamodel) to the sorts of the target algebra 
(UML metamodel). Relationships between the sorts of 
both algebras result in a subsort order that involves all 
the sorts. For instance, in the example, the sort Table is 
a subsort of the sort Class, indicating that a class can 
take the place of a table that was there before. Subsort 
relationships affect all the sorts of both algebras, even 
identifiers and lists, because they are the related 
concepts in the MOMENT algebra. 

The properties that relate concepts in the MOMENT 
algebra define a canonical order among the sorts of the 
compiled algebras. This order is taken into account to 
generate the rewriting rules. We present the rewriting 
rules that are applied to the relational schema of the 
example to obtain a semantically equivalent UML 
model in CafeOBJ syntax: 
a) Field 

A field of a table becomes an attribute of a class 
in the term that represents a UML model. The rule 
reuses the features of the field (datatype, whether it 
is null or not and whether it is primary key) to 
generate an attribute. Field features also indicate the 
attribute datatype, whether it is required or not and 
whether it is the identifier of the class to which it 
belongs:   
op field _ _ _ _ _ _ : FieldId Datatype Bool Bool 
TableId DatabaseId -> Attribute 
eq field FI D NNV PK TI DBI = attribute FI D NNV 
false PK TI DBI .  

b) Foreign Key 
A foreign key can define an association between 

two classes in the UML context. The following rule 
is applied when the foreign key is unique and not 
null, obtaining an association 1..1 - 0..* between the 
classes generated from the related tables.   
op foreignKey _ _ _ _ _ _ : ForeignKeyId 
ListAttribute TableId Bool TableId DatabaseId -> 
ListClass 
ceq foreignKey FkI LA RTI U TI DBI = (association 
FkI TI RTI DBI) (associationEnd TI TI FkI true 
unordered aggregate card 0 many frozen public 
DBI) (associationEnd RTI RTI FkI true unordered 
none card 1 card 1 frozen public DBI)  if U and 
isRequired (LA) . 

c) Table 
A table becomes a class. The rewriting rules must 

take into account the fact that a table is made up of 
fields and foreign keys, so that a field will become 
an attribute of the new class and a foreign key will 

-- ATTRIBUTE:  id, type, required, constant, identifier, ClassId, 
-- schemaid
op attribute _ _ _ _ _ _ _ : AttributeId Datatype Bool Bool Bool
ClassId 
SchemaId -> Attribute {constr}
-- ASSOCIATION
op association _ _ _ _ : AssociationId AssociationEndId 
AssociationEndId SchemaId -> Association {constr}
-- ASSOCIATIONEND: id, id of the class, id of the association,
-- isNavigable, ordering, aggregation, min card., max card, 
-- changeability, visibility, id of the schema
op associationEnd _ _ _ _ _ _ _ _ _ _ _ : AssociationEndId 
ClassId AssociationId Bool OrderingKind AggregationKind 
Cardinality Cardinality ChangeableKind VisibleKind SchemaId -> 
AssociationEnd {constr}
-- CLASS
op class _ _ _ : ClassId ListAttribute SchemaId -> Class {constr}
-- OOSCHEMA
op ooSchema _ _ : SchemaId ListClass -> OOSchema {constr}

-- FIELD:  id, type, is nnv, is pk, tableid, dbid
op field _ _ _ _ _ _ : FieldId Datatype Bool Bool TableId 
DatabaseId -> 
Field {constr}
-- FOREIGNKEY:  id, field list, related table, is unique, table that 
-- contains the fk, database
op foreignKey _ _ _ _ _ _ : ForeignKeyId ListField TableId Bool 
TableId DatabaseId -> ForeignKey {constr}
-- TABLE
op table _ _ _ _ : TableId ListField ListForeignKey DatabaseId -> 
Table {constr}
-- DATABASE
op database _ _ : DatabaseId ListTable -> Database {constr}



become a set of elements of the UML model, i.e., an 
association and two association ends, according to 
the UML metamodel.   
op table _ _ _ _ : TableId ListAttribute ListClass 
DatabaseId -> ListClass  
eq table TI LA nilForeignKey DBI = (class TI LA 
DBI) . 
eq table TI LA LC DBI = (class TI LA DBI) LC . 

d) Database 
Finally, a database is rewritten into a term of the 

sort OOSchema, representing the target UML 
model, by means of the following rule:  
op database _ _ : DatabaseId ListClass -> 
OOSchema 
eq database DBI LC = ooSchema DBI LC .  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Original term representing the source 
relational schema (7.a), and the generated term 

representing the target UML model (7.b). 
 

4.1.4. Term rewriting process 
 
Step (8) compiles the relational schema defined in 

the M1-layer of the MOMENT platform, obtaining the 
algebraic term in Figure. 7.a. The TRS applies the 
rewriting rules specified above to this initial term, 
obtaining a term of the target algebra (UML), shown in 
Figure. 7.b. This term is parsed and is defined as a 

UML model in the M1-layer of the MOMENT 
platform. There, it is automatically related to graphical 
pictures in a specific CASE tool.  

During the term rewriting process, some additional 
information could be required in order to perform a 
correct transformation, as the metamodels do not have 
the same expressive power. For instance when a 
transformation case has not been taken into account or 
when several rewriting rules can be applied to the 
source model. In these cases a visual wizard helps the 
user to chose one option or even to add a new 
transformation rule, providing a visual interface for the 
CafeOBJ interpreter.  

To benefit from the MOMENT features, we have 
integrated the functionality of the MOMENT 
Framework into a visual modeling environment [14]. In 
this way, we can relate algebraic specifications to 
visual notations so that the user can use these graphics 
to build a model. The CASE tool we have chosen is 
MS Visio [15]. We have developed an add-in that 
permits the definition of metamodels with concepts and 
properties. Figure. 8 shows the interface that permits 
the definition of the graphical symbol of a class in the 
MOMENT platform. 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Visual interface to define a graphical 

primitive algebraically 
 
In visual CASE tools, models are usually defined by 

dropping graphical primitives on a sheet where the 
model is defined. By means of the developed add-in, 
dropping a primitive on the sheet does not only add a 
figure to the model but it also defines it algebraically, 
specifying the model so that it can be manipulated 
afterwards. 
 
5. Relational Migration Plan Generator 

 
This phase generates a migration plan that specifies 

what information must be copied from the legacy 
database to the database of the new OO application. Its 

database 'InvoiceRS'
((table 'Invoice' 

((field 'code' integer true true 'Invoice' 'InvoiceRS') 
(field 'date' datetime false false 'Invoice' 'InvoiceRS')) 

nilForeignKey 
'InvoiceRS')

(table 'InvoiceLine' 
((field 'code' integer true true 'InvoiceLine' 'InvoiceRS')

(field 'number' integer true true 'InvoiceLine' 'InvoiceRS')
(field 'description' string false false 'InvoiceLine' 'InvoiceRS') 
(field 'date' datetime true false 'InvoiceLine' 'InvoiceRS')
(field 'hours' decimal true false 'InvoiceLine' 'InvoiceRS')) 

((foreignKey 'FK-InvoiceLine-Invoice' 
((field 'code' integer true true 'InvoiceLine' 'InvoiceRS'))
'Invoice‘ true 'InvoiceLine‘ 'InvoiceRS')) 

'InvoiceRS'))

OOSchema 'InvoiceRS'
((class 'Invoice' 

((attribute 'code' integer true false true 'Invoice' 'InvoiceRS') 
(attribute 'date' datetime false false false 'Invoice‘ 'InvoiceRS')) 

'InvoiceRS‘)
(class 'InvoiceLine' 

((attribute 'code' integer true false true 'InvoiceLine' 'InvoiceRS') 
(attribute 'number' integer true false true 'InvoiceLine' 'InvoiceRS')
(attribute 'description' string false false false 'InvoiceLine' 'InvoiceRS') 
(attribute 'date' datetime true false false 'InvoiceLine' 'InvoiceRS') 
(attribute 'hours' decimal true false false 'InvoiceLine' 'InvoiceRS'))   

'InvoiceRS‘) 
(association 'FK-InvoiceLine-Invoice' 'a' 'b' 'InvoiceRS')                
(associationEnd 'a' 'InvoiceLine' 'FK-InvoiceLine-Invoice' 'InvoiceRS') 
(associationEnd 'a' 'Invoice' 'FK-InvoiceLine-Invoice' 'InvoiceRS'))

Relational Schema (a)

UML Model (b)



inputs are two XML documents that contain the 
mappings: 
− between elements of the legacy relational schema 

and elements of the recently generated OO 
conceptual schema. 

− between elements of this OO conceptual schema and 
elements of the new relational schema generated by 
the Rose Data Modeler add-in. 
The migration plan generator applies a set of 

patterns to the input correspondences and produces a 
migration plan that is specified using a relational 
declarative language indicating what information has to 
be copied from the legacy database to the new one. The 
use of a declarative language provides independence 
from the specific DBMSs used for supporting the 
databases. Additionally, this phase checks the 
constraints of the target database in order to avoid 
constraint violation. 

 
5.1. Relational Migration Plan 

 
A relational migration plan specifies the actions that 

must be performed in order to copy data from the 
legacy database to the new database, generated from 
the recovered OO conceptual schema. The migration 
plan consists of a set of migration modules. There 
exists one migration module for each specific table of 
the target database. Therefore, a migration module 
assigns a view over the legacy database to a target table 
indicating where to find the source data.  

To specify the data copy process, a migration 
module contains a set of mappings between columns of 
the source view and the target table. Those mappings 
constitute the migration expressions that can be used in 
a migration plan and they are specified by means of the 
relational declarative language. 

The automatic generation of the migration plan 
considers its structure and its contents. Thus, two kinds 
of patterns are used: migration patterns and migration 
expression patterns. Migration patterns generate the 
structure of the migration plan following the ordering 
of the tables of the new database. Migration expression 
patterns generate their content by means of migration 
expressions that represent mappings between columns 
of the relational tables.  

The migration plan generator gets the applied 
rewriting rules of the reengineering process from the 
two input XML documents, one from the data reverse 
engineering phase and another one from the Rose Data 
Modeler. These rules provide enough information to 
determine how many migration modules are needed 
and which tables of the legacy database form the source 
view for each module. Thus, the generator constructs 

the migration modules by applying the migration 
patterns. Then, it applies the migration expression 
patterns in order to link attributes of the source view 
with attributes of the target table in each migration 
module, reflecting the generation process followed to 
obtain the target database. Once the migration plan is 
finished, the generator writes it in an XML document, 
ready to be compiled into a specific technology in 
order to perform the data migration. 

 
6. Migration Plan compiler 

 
This phase performs the compilation of the 

migration plan to a specific technology and its 
execution in order to carry out the physical data 
migration. We use the Data Transformation Services 
(DTS) of Microsoft SQL Server. This tool allows data 
migration between heterogeneous relational DBMS by 
applying data transformation services in order to fulfill 
target database requirements.  

The compiler receives an XML document that 
describes the migration plan from the second phase of 
RELS and obtains a set of DTS packages that are able 
to perform the specified migration plan between the 
legacy database and the new one.  
 
7. Related works 
 

The MétaGen project [16] has dealt with model 
engineering since 1991, aiming at a fully automatic 
generation of a conventional application from a 
description given by its intended user. Such a 
description is performed by means of PIR3, a variant of 
what is known in the Database community as Entity-
Relationship Model. In [17], Revault et al. compared 
three metamodeling formalisms to share the experience 
they acquired during the MétaGen project. In that 
paper, they presented a way to transform MOF-based 
metamodels into PIR3-based metamodels so that the 
metamodels could benefit from the MétaGen tools. 
This proposal constrains the expressivity of the source 
metamodels because the Object-Oriented paradigm is 
richer than the Entity-Relationship paradigm. Our 
model management approach supports the definition of 
several metamodeling languages such as MOF or PIR3, 
considering them as models at the same abstraction 
level and using generic operators. This makes 
automated transformations between models of both 
metamodels possible, without loss of expressivity.  

XML [18], the standard for data communication 
between applications is also used to represent models 
and metamodels by means of the XMI specification 
[19]. MOF defines a meta-metamodel, while XMI 



indicates the physical representation for the 
metamodels and the models that can be defined with it. 
In the model transformation field, there is a XML 
specification that allows the transformation of a XML 
document into another one, called XSLT [20]. It could 
be used to transform models that are represented in the 
XML format. Comparing XSLT to term rewriting 
systems, there are some differences that should be 
pointed out:   
− Although XSLT is said to be a declarative language, 

control instructions, such as jumps and loops, can be 
used to guide the transformation process. In 
contrast, a term rewriting system takes over the 
transformation rule evaluation process.  

− Writing an XSLT program is a long and painful 
process which implies poor readability and high 
maintenance cost for associated programs. Also, 
writing an XSLT program requires good skills in the 
MOF and XMI specification, because when using 
XPATH and XSLT, the developer must take into 
account the structure of models which depends on 
metamodels. These metamodels are in turn widely 
influenced by MOF and XMI. By expressing 
metamodels as algebras, we can deal with a more 
specific syntax that reflects their semantics using the 
algebras as domain specific languages. Therefore, 
writing models (and consequently transformation 
rules) becomes easier and more comprehensible. 

− Transformation rules in XSLT are applied without 
taking into account the target XML schema 
(metamodel when transforming models), implying a 
posterior checking to determine whether the 
obtained document is a valid XML document that 
conforms to the target schema. Rewriting rules in an 
algebra take into account the source and the target 
algebras so that a posterior checking is no longer 
needed.  

− Executing an XSLT program is not user-friendly for 
model transformation because there are no error 
messages to advise the user about an incorrect 
transformation.   
The MTRANS Framework [21] provides an abstract 

language to define transformation rules that are 
compiled to XSLT. Even though this language is more 
compact and easier to understand than XSLT, it still 
keeps instructions to manage the transformation rules 
evaluation. Nevertheless, transformations using XML 
technology imply the use of standard specifications that 
are industrially supported while term rewriting systems 
usually remain within the field of research. 

   
 

8. Conclusions 
 

Nowadays, software applications have become 
complex combinations of technology, which have to be 
well understood in order to manage them. The 
development of software artifacts involves models that 
can be mixed with others to obtain an entire system 
from partial views or that can be interconnected with 
others in order to guarantee both interoperability in a 
distributed environment and their implementations. 

MDA raises the level of abstraction in the software 
development process by treating models as primary 
artifacts. MDA potentially covers the modeling of all 
aspects of a system throughout its life cycle, making 
software development processes easier and more 
automated.  

The MOMENT (MOdel manageMENT) platform 
follows this trend by providing a framework where 
models can be represented using an algebraic approach. 
The MOMENT Framework benefits from the best 
features of current visual CASE tools and from the 
main advantages of formal environments such as term 
rewriting systems, combining both industrial and 
research features. 

In this paper, we have presented the generic model 
transformation mechanism provided by the MOMENT 
Framework, focusing on the use of the CafeOBJ Term 
Rewriting System to perform automatic translations of 
models. This mechanism has been applied to legacy 
relational database recovering in the MDA context, 
obtaining a UML model from a relational schema. The 
functionality of TRSs permits us to deal with model 
transformation from a more abstract point of view, 
since the application of rewriting rules can be 
performed in a transparent way. This fact allows us to 
focus all the efforts on the specification of models 
without having to take the evaluation logic into 
account. Our approach constitutes an algebraic baseline 
to cope with the future model transformation language 
QVT, providing a user-friendly environment to 
manipulate models from a visual CASE tool [14]. In 
[22], we present the fundamental mainstay on which we 
have built our MOMENT platform taking into account 
our previous experience in the industrial project RELS, 
a tool for the recovery of legacy systems. 

Currently, we are working with transformations 
between relational schemas and UML models. In the 
near future, we will also take into account software 
architecture specifications by means of PRISMA ADL 
[23], studying semantic interoperability between 
software architectures and other types of software 
artifacts represented through UML models. 
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